Documentation Verification Report

Delete

πŸ“ Source: Mathlib/Combinatorics/Matroid/Minor/Delete.lean

Statistics

MetricCount
Definitionsdelete, Β«term_οΌΌ_Β»
2
Theoremsdelete_isBase_iff, delete_rankPos, delete_spanning_iff, indep_delete_of_disjoint, of_delete, delete, of_delete, of_delete, of_delete, exists_eq_delete, isRestriction_deleteElem, restrict_delete_of_disjoint, circuit_iff_delete_of_disjoint, deleteElem_eq_self, deleteElem_indep_iff, delete_closure_eq, delete_closure_eq_of_disjoint, delete_comm, delete_compl, delete_delete, delete_delete_eq_delete_diff, delete_dep_iff, delete_empty, delete_eq_delete_iff, delete_eq_restrict, delete_eq_self, delete_eq_self_iff, delete_finitary, delete_finite, delete_ground, delete_indep_iff, delete_inter_ground_eq, delete_isBase_iff, delete_isBasis'_iff, delete_isBasis_iff, delete_isCircuit_iff, delete_isColoop_iff, delete_isLoop_iff, delete_isNonloop_iff, delete_isRestriction, delete_loops_eq, delete_loops_eq_removeLoops, delete_rankFinite, delete_subset_ground, indep_iff_delete_of_disjoint, isNonloop_iff_delete_of_notMem, isRestriction_iff_exists_eq_delete, restrict_compl
48
Total50

Matroid

Definitions

NameCategoryTheorems
delete πŸ“–CompOp
70 mathmath: IsBasis'.contract_eq_contract_delete, isNonloop_iff_delete_of_notMem, delete_comm, IsCocircuit.delete_isCocircuit, indep_iff_delete_of_disjoint, IsRestriction.exists_eq_delete, delete_inter_ground_eq, IsMinor.exists_eq_contract_delete_disjoint, delete_eq_self_iff, delete_isBasis'_iff, delete_empty, Coindep.delete_spanning_iff, contract_delete_isMinor, delete_compl, dual_contract_delete, deleteElem_indep_iff, contract_eq_delete_of_subset_loops, dual_contract, delete_closure_eq, contract_eq_delete_of_subset_coloops, circuit_iff_delete_of_disjoint, contract_delete_comm', deleteElem_eq_self, delete_isNonloop_iff, delete_contract_delete, delete_contract_eq_diff, IsBasis.delete, dual_delete_contract, delete_closure_eq_of_disjoint, delete_eq_restrict, delete_isRestriction, contract_delete_contract, delete_finitary, delete_isLoop_iff, delete_ground, dual_delete_dual, contract_delete_diff, contract_delete_contract', delete_loops_eq_removeLoops, delete_loops_eq, delete_finite, contract_delete_contract_delete, delete_isColoop_iff, delete_dep_iff, isRestriction_iff_exists_eq_delete, IsRestriction.isRestriction_deleteElem, contract_closure_eq_contract_delete, dual_contract_dual, delete_contract_comm', delete_rankFinite, Indep.indep_delete_of_disjoint, delete_isBasis_iff, contract_delete_comm, IsRestriction.restrict_delete_of_disjoint, IsBasis.contract_eq_contract_delete, delete_contract_delete', restrict_compl, delete_subset_ground, delete_delete, delete_eq_delete_iff, delete_eq_self, Coindep.delete_isBase_iff, contract_delete_contract_delete', delete_indep_iff, delete_isCircuit_iff, Coindep.delete_rankPos, delete_isBase_iff, delete_delete_eq_delete_diff, dual_delete, IsCocircuit.delete_diff_isCocircuit
Β«term_οΌΌ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
circuit_iff_delete_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsCircuit
delete
β€”delete_isCircuit_iff
IsCircuit.of_delete
deleteElem_eq_self πŸ“–mathematicalSet
Set.instMembership
E
delete
Set.instSingletonSet
β€”β€”
deleteElem_indep_iff πŸ“–mathematicalβ€”Indep
delete
Set
Set.instSingletonSet
Set.instMembership
β€”β€”
delete_closure_eq πŸ“–mathematicalβ€”closure
delete
Set
Set.instSDiff
β€”restrict_compl
restrict_closure_eq'
sdiff_sdiff_self
Set.bot_eq_empty
Set.union_empty
Set.diff_eq
Set.inter_comm
Set.inter_assoc
closure_inter_ground
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
closure_subset_ground
delete_closure_eq_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
closure
delete
Set.instSDiff
β€”delete_closure_eq
Disjoint.sdiff_eq_left
delete_comm πŸ“–mathematicalβ€”deleteβ€”delete_delete
Set.union_comm
delete_compl πŸ“–mathematicalSet
Set.instHasSubset
E
delete
Set.instSDiff
restrict
β€”restrict_compl
Set.diff_diff_cancel_left
delete_delete πŸ“–mathematicalβ€”delete
Set
Set.instUnion
β€”restrict_compl
restrict_restrict_eq
restrict_ground_eq
Set.diff_diff
delete_delete_eq_delete_diff πŸ“–mathematicalβ€”delete
Set
Set.instSDiff
β€”delete_delete
Set.union_diff_self
delete_dep_iff πŸ“–mathematicalβ€”Dep
delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”dep_iff
delete_indep_iff
delete_ground
Set.subset_diff
delete_empty πŸ“–mathematicalβ€”delete
Set
Set.instEmptyCollection
β€”delete_eq_self_iff
Set.empty_disjoint
delete_eq_delete_iff πŸ“–mathematicalβ€”delete
Set
Set.instInter
E
β€”delete_inter_ground_eq
Set.diff_diff_cancel_left
Set.inter_subset_right
delete_eq_restrict πŸ“–mathematicalβ€”delete
restrict
Set
Set.instSDiff
E
β€”β€”
delete_eq_self πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
E
deleteβ€”delete_eq_self_iff
delete_eq_self_iff πŸ“–mathematicalβ€”delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
E
β€”restrict_compl
restrict_eq_self_iff
sdiff_eq_left
disjoint_comm
delete_finitary πŸ“–mathematicalβ€”Finitary
delete
β€”restrict_finitary
delete_finite πŸ“–mathematicalβ€”Finite
delete
β€”Set.Finite.diff
ground_finite
delete_ground πŸ“–mathematicalβ€”E
delete
Set
Set.instSDiff
β€”β€”
delete_indep_iff πŸ“–mathematicalβ€”Indep
delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”restrict_compl
restrict_indep_iff
Set.subset_diff
Indep.subset_ground
delete_inter_ground_eq πŸ“–mathematicalβ€”delete
Set
Set.instInter
E
β€”restrict_compl
Set.diff_inter_self_eq_diff
delete_isBase_iff πŸ“–mathematicalβ€”IsBase
delete
IsBasis
Set
Set.instSDiff
E
β€”restrict_compl
isBase_restrict_iff
delete_isBasis'_iff πŸ“–mathematicalβ€”IsBasis'
delete
Set
Set.instSDiff
β€”isBasis'_iff_isBasis_inter_ground
delete_isBasis_iff
delete_ground
Set.diff_eq
Set.inter_comm
Set.inter_assoc
Set.inter_diff_assoc
Set.disjoint_sdiff_left
delete_isBasis_iff πŸ“–mathematicalβ€”IsBasis
delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”restrict_compl
isBasis_restrict_iff
Set.subset_diff
IsBasis.subset_ground
delete_isCircuit_iff πŸ“–mathematicalβ€”IsCircuit
delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”delete_eq_restrict
restrict_isCircuit_iff
Set.subset_diff
IsCircuit.subset_ground
delete_isColoop_iff πŸ“–mathematicalβ€”IsColoop
delete
Set
Set.instMembership
closure
Set.instSDiff
E
Set.instSingletonSet
β€”delete_eq_restrict
restrict_isColoop_iff
Set.diff_subset
Set.mem_diff
delete_isLoop_iff πŸ“–mathematicalβ€”IsLoop
delete
Set
Set.instMembership
β€”singleton_dep
delete_dep_iff
Set.disjoint_singleton_left
delete_isNonloop_iff πŸ“–mathematicalβ€”IsNonloop
delete
Set
Set.instMembership
β€”indep_singleton
delete_indep_iff
Set.disjoint_singleton_left
delete_isRestriction πŸ“–mathematicalβ€”IsRestriction
delete
β€”restrict_isRestriction
Set.diff_subset
delete_loops_eq πŸ“–mathematicalβ€”loops
delete
Set
Set.instSDiff
β€”delete_closure_eq
Set.empty_diff
delete_loops_eq_removeLoops πŸ“–mathematicalβ€”delete
loops
removeLoops
β€”removeLoops.eq_1
delete_eq_restrict
compl_loops_eq
delete_rankFinite πŸ“–mathematicalβ€”RankFinite
delete
β€”restrict_rankFinite
delete_subset_ground πŸ“–mathematicalβ€”Set
Set.instHasSubset
E
delete
β€”Set.diff_subset
indep_iff_delete_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Indep
delete
β€”Indep.indep_delete_of_disjoint
Indep.of_delete
isNonloop_iff_delete_of_notMem πŸ“–mathematicalSet
Set.instMembership
IsNonloop
delete
β€”delete_isNonloop_iff
IsNonloop.of_delete
isRestriction_iff_exists_eq_delete πŸ“–mathematicalβ€”IsRestriction
Set
Set.instHasSubset
E
delete
β€”IsRestriction.exists_eq_delete
delete_isRestriction
restrict_compl πŸ“–mathematicalβ€”restrict
Set
Set.instSDiff
E
delete
β€”β€”

Matroid.Coindep

Theorems

NameKindAssumesProvesValidatesDepends On
delete_isBase_iff πŸ“–mathematicalMatroid.CoindepMatroid.IsBase
Matroid.delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Matroid.delete_isBase_iff
Matroid.IsBasis.subset
Matroid.IsBasis.isBasis_closure_right
Matroid.isBasis_ground_iff
closure_compl
Set.subset_diff
Matroid.IsBasis.isBasis_subset
Matroid.IsBase.isBasis_ground
Matroid.IsBase.subset_ground
Set.diff_subset
delete_rankPos πŸ“–mathematicalMatroid.CoindepMatroid.RankPos
Matroid.delete
β€”Matroid.rankPos_iff
delete_isBase_iff
Matroid.empty_not_isBase
delete_spanning_iff πŸ“–mathematicalMatroid.CoindepMatroid.Spanning
Matroid.delete
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”delete_isBase_iff
Disjoint.mono_left

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
indep_delete_of_disjoint πŸ“–mathematicalMatroid.Indep
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.deleteβ€”Matroid.delete_indep_iff
of_delete πŸ“–β€”Matroid.Indep
Matroid.delete
β€”β€”Matroid.delete_indep_iff

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
delete πŸ“–mathematicalMatroid.IsBasis
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.deleteβ€”Matroid.delete_isBasis_iff
of_delete πŸ“–β€”Matroid.IsBasis
Matroid.delete
β€”β€”Matroid.delete_isBasis_iff

Matroid.IsCircuit

Theorems

NameKindAssumesProvesValidatesDepends On
of_delete πŸ“–β€”Matroid.IsCircuit
Matroid.delete
β€”β€”Matroid.delete_isCircuit_iff

Matroid.IsNonloop

Theorems

NameKindAssumesProvesValidatesDepends On
of_delete πŸ“–β€”Matroid.IsNonloop
Matroid.delete
β€”β€”Matroid.delete_isNonloop_iff

Matroid.IsRestriction

Theorems

NameKindAssumesProvesValidatesDepends On
exists_eq_delete πŸ“–mathematicalMatroid.IsRestrictionSet
Set.instHasSubset
Matroid.E
Matroid.delete
β€”Set.diff_subset
Matroid.delete_compl
Matroid.restrict_ground_eq
isRestriction_deleteElem πŸ“–mathematicalMatroid.IsRestriction
Set
Set.instMembership
Matroid.E
Matroid.delete
Set.instSingletonSet
β€”restrict_delete_of_disjoint
restrict_delete_of_disjoint πŸ“–mathematicalMatroid.IsRestriction
Disjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.E
Matroid.deleteβ€”Matroid.isRestriction_iff_exists_eq_delete
Set.diff_subset_diff_left
Matroid.delete_delete
Set.union_diff_self
Set.union_comm
Matroid.delete_eq_self_iff

---

← Back to Index