Documentation Verification Report

Order

πŸ“ Source: Mathlib/Combinatorics/Matroid/Minor/Order.lean

Statistics

MetricCount
DefinitionsIsMinor, IsStrictMinor, instPartialOrder, Β«term_, Β«term_≀m_Β»
5
Theoremsof_isMinor, of_isMinor, of_isMinor, antisymm, eq_of_ground_subset, exists_eq_contract_delete_disjoint, le, refl, subset, trans, trans_isStrictMinor, of_isMinor, isMinor, lt, ne, not_isMinor, ssubset, trans, trans_isMinor, contract_delete_isMinor, isStrictMinor_iff_isMinor_ne, isStrictMinor_iff_isMinor_ssubset, isStrictMinor_irrefl, le_eq_isMinor, lt_eq_isStrictMinor
25
Total30

Matroid

Definitions

NameCategoryTheorems
IsMinor πŸ“–MathDef
7 mathmath: IsStrictMinor.isMinor, IsMinor.refl, IsStrictMinor.not_isMinor, contract_delete_isMinor, isStrictMinor_iff_isMinor_ssubset, le_eq_isMinor, isStrictMinor_iff_isMinor_ne
IsStrictMinor πŸ“–MathDef
4 mathmath: lt_eq_isStrictMinor, isStrictMinor_irrefl, isStrictMinor_iff_isMinor_ssubset, isStrictMinor_iff_isMinor_ne
instPartialOrder πŸ“–CompOp
4 mathmath: lt_eq_isStrictMinor, IsStrictMinor.lt, IsMinor.le, le_eq_isMinor
Β«term_ πŸ“–CompOpβ€”
Β«term_≀m_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
contract_delete_isMinor πŸ“–mathematicalβ€”IsMinor
delete
contract
β€”β€”
isStrictMinor_iff_isMinor_ne πŸ“–mathematicalβ€”IsStrictMinor
IsMinor
β€”lt_iff_le_and_ne
isStrictMinor_iff_isMinor_ssubset πŸ“–mathematicalβ€”IsStrictMinor
IsMinor
Set
Set.instHasSSubset
E
β€”IsStrictMinor.isMinor
IsStrictMinor.ssubset
HasSSubset.SSubset.ne
Set.instIrreflSSubset
IsMinor.antisymm
isStrictMinor_irrefl πŸ“–mathematicalβ€”IsStrictMinorβ€”lt_irrefl
le_eq_isMinor πŸ“–mathematicalβ€”Matroid
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
IsMinor
β€”β€”
lt_eq_isStrictMinor πŸ“–mathematicalβ€”Matroid
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
IsStrictMinor
β€”β€”

Matroid.Dep

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMinor πŸ“–β€”Matroid.Dep
Set
Set.instHasSubset
Matroid.E
Matroid.IsMinor
β€”β€”not_indep
Matroid.Indep.of_isMinor

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMinor πŸ“–β€”Matroid.Indep
Matroid.IsMinor
β€”β€”of_contract
of_delete

Matroid.IsLoop

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMinor πŸ“–β€”Matroid.IsLoop
Set
Set.instMembership
Matroid.E
Matroid.IsMinor
β€”β€”Matroid.singleton_dep
Matroid.Dep.of_isMinor

Matroid.IsMinor

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–β€”Matroid.IsMinorβ€”β€”eq_of_ground_subset
subset
eq_of_ground_subset πŸ“–β€”Matroid.IsMinor
Set
Set.instHasSubset
Matroid.E
β€”β€”Matroid.contract_inter_ground_eq
Disjoint.inter_eq
Disjoint.symm
Set.subset_diff
Matroid.contract_ground
Matroid.delete_ground
Matroid.contract_empty
Matroid.delete_inter_ground_eq
Matroid.delete_empty
exists_eq_contract_delete_disjoint πŸ“–mathematicalMatroid.IsMinorSet
Set.instHasSubset
Matroid.E
Disjoint
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Matroid.delete
Matroid.contract
β€”Set.inter_subset_right
HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
Disjoint.mono_left
Set.inter_subset_left
Set.disjoint_sdiff_right
Matroid.contract_inter_ground_eq
Set.inter_diff_assoc
Set.inter_assoc
Set.inter_self
le πŸ“–mathematicalMatroid.IsMinorMatroid
Preorder.toLE
PartialOrder.toPreorder
Matroid.instPartialOrder
β€”β€”
refl πŸ“–mathematicalβ€”Matroid.IsMinorβ€”Matroid.contract_empty
Matroid.delete_empty
subset πŸ“–mathematicalMatroid.IsMinorSet
Set.instHasSubset
Matroid.E
β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.diff_subset
trans πŸ“–β€”Matroid.IsMinorβ€”β€”Matroid.contract_delete_contract_delete'
trans_isStrictMinor πŸ“–β€”Matroid.IsMinor
Matroid.IsStrictMinor
β€”β€”LE.le.trans_lt
le

Matroid.IsNonloop

Theorems

NameKindAssumesProvesValidatesDepends On
of_isMinor πŸ“–β€”Matroid.IsNonloop
Matroid.IsMinor
β€”β€”of_contract
of_delete

Matroid.IsStrictMinor

Theorems

NameKindAssumesProvesValidatesDepends On
isMinor πŸ“–mathematicalMatroid.IsStrictMinorMatroid.IsMinorβ€”LT.lt.le
lt
lt πŸ“–mathematicalMatroid.IsStrictMinorMatroid
Preorder.toLT
PartialOrder.toPreorder
Matroid.instPartialOrder
β€”β€”
ne πŸ“–β€”Matroid.IsStrictMinorβ€”β€”LT.lt.ne
lt
not_isMinor πŸ“–mathematicalMatroid.IsStrictMinorMatroid.IsMinorβ€”LT.lt.not_ge
lt
ssubset πŸ“–mathematicalMatroid.IsStrictMinorSet
Set.instHasSSubset
Matroid.E
β€”HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Matroid.IsMinor.subset
isMinor
ne
Matroid.IsMinor.eq_of_ground_subset
Eq.subset
Set.instReflSubset
trans πŸ“–β€”Matroid.IsStrictMinorβ€”β€”LT.lt.trans
lt
trans_isMinor πŸ“–β€”Matroid.IsStrictMinor
Matroid.IsMinor
β€”β€”LT.lt.trans_le
lt

---

← Back to Index