Documentation Verification Report

Restrict

📁 Source: Mathlib/Combinatorics/Matroid/Minor/Restrict.lean

Statistics

MetricCount
DefinitionsIsRestriction, IsStrictRestriction, Matroidᔣ, toMatroid, instCoeOutMatroidᔣ, instPartialOrderMatroidᔣ, restrict, restrictIndepMatroid, «term_, «term_↟_», «term_≀r_»
11
Theoremsdep_isRestriction, of_isRestriction, augment, augment_finset, exists_insert_of_not_isBasis, exists_isBasis_subset_union_isBasis, indep_isRestriction, indep_restrict_of_subset, of_isRestriction, of_restrict, isBasis_of_isRestriction, encard_eq_encard, isBase_restrict, encard_eq_encard, eq_exchange_of_diff_eq_singleton, exchange, isBase_of_isBase_subset, isBase_restrict, isBasis_isRestriction, isBasis_of_isBasis_of_subset_of_subset, isBasis_restrict_of_subset, of_isRestriction, restrict_isBase, transfer, antisymm, base_iff, dep_iff, eq_or_isStrictRestriction, eq_restrict, exists_eq_restrict, finitary, finite, indep_iff, isBasis_iff, isStrictRestriction_of_ground_ne, isStrictRestriction_of_ne, of_subset, rankFinite, refl, subset, trans, eq_restrict, exists_eq_restrict, irrefl, isRestriction, ne, of_ssubset, ssubset, coe_inj, ext, ext_iff, le_iff, lt_iff, finite_setOf_isRestriction, isBase_restrict_iff, isBase_restrict_iff', isBasis'_iff_isBasis_restrict_univ, isBasis'_restrict_iff, isBasis_restrict_iff, isBasis_restrict_iff', isRestriction_iff_exists, ofMatroid_le_iff, ofMatroid_lt_iff, restrictIndepMatroid_E, restrictIndepMatroid_Indep, restrict_dep_iff, restrict_eq_restrict_iff, restrict_eq_self_iff, restrict_finitary, restrict_finite, restrict_ground_eq, restrict_ground_eq_self, restrict_idem, restrict_indep_iff, restrict_isRestriction, restrict_isStrictRestriction, restrict_rankFinite, restrict_restrict_eq
78
Total89

Matroid

Definitions

NameCategoryTheorems
IsRestriction 📖MathDef
11 mathmath: IsRestriction.of_subset, IsRestriction.refl, Matroidᔣ.le_iff, IsStrictRestriction.isRestriction, restrict_isRestriction, removeLoops_isRestriction, ofMatroid_le_iff, finite_setOf_isRestriction, delete_isRestriction, isRestriction_iff_exists, isRestriction_iff_exists_eq_delete
IsStrictRestriction 📖MathDef
8 mathmath: IsRestriction.isStrictRestriction_of_ground_ne, restrict_isStrictRestriction, IsRestriction.eq_or_isStrictRestriction, IsStrictRestriction.irrefl, ofMatroid_lt_iff, IsStrictRestriction.of_ssubset, IsRestriction.isStrictRestriction_of_ne, Matroidᔣ.lt_iff
Matroidᔣ 📖CompData
4 mathmath: Matroidᔣ.le_iff, ofMatroid_le_iff, ofMatroid_lt_iff, Matroidᔣ.lt_iff
instCoeOutMatroidᔣ 📖CompOp—
instPartialOrderMatroidᔣ 📖CompOp
4 mathmath: Matroidᔣ.le_iff, ofMatroid_le_iff, ofMatroid_lt_iff, Matroidᔣ.lt_iff
restrict 📖CompOp
73 mathmath: IsBasis.isBase_restrict, isBase_restrict_iff', fundCircuit_restrict, Spanning.eRank_restrict, restrict_eq_self_iff, IsRestriction.of_subset, cRk_restrict_subset, restrict_loops_eq, restrict_loops_eq', IsRestriction.exists_eq_restrict, isBasis_restrict_iff, loopyOn_restrict, isBasis'_restrict_iff, isNonloop_iff_restrict_of_mem, delete_compl, removeLoops_restrict_eq_restrict, restrict_spanning_iff, restrict_rankFinite, Indep.restrict_eq_freeOn, IsBasis'.isBase_restrict, restrict_eq_restrict_iff, restrict_closure_eq, restrict_dep_iff, restrict_ground_eq, uniqueBaseOn_restrict', restrict_spanning_iff', restrict_isRestriction, restrict_isCircuit_iff, restrict_isColoop_iff, freeOn_restrict, restrict_empty, eRank_restrict, IsRkFinite.rankFinite, delete_eq_restrict, removeLoops_eq_restrict, restrict_isNonloop_iff, map_val_restrictSubtype_eq, restrict_eq_freeOn_iff, restrict_ground_eq_self, fundCircuit_restrict_univ, cRank_restrict, eq_restrict_removeLoops, restrict_eRk_eq', IsBasis.isBasis_restrict_of_subset, isBasis_restrict_iff', isRestriction_iff_exists, Indep.indep_restrict_of_subset, restrict_isStrictRestriction, restrict_eRk_eq, restrict_finite, Spanning.isBase_restrict_iff, IsStrictRestriction.eq_restrict, restrict_finitary, restrict_closure_eq', restrict_contract_eq_contract_restrict, IsCircuit.isCircuit_restrict_of_subset, restrict_indep_iff, restrict_subset_loops_eq, restrict_restrict_eq, isBase_restrict_iff, restrict_compl, contract_restrict_eq_restrict_contract, isBasis'_iff_isBasis_restrict_univ, uniqueBaseOn_restrict, IsBasis.restrict_isBase, invariantCardinalRank_restrict, IsRestriction.eq_restrict, restrict_isLoop_iff, IsStrictRestriction.of_ssubset, restrict_univ_removeLoops_eq, restrict_idem, IsStrictRestriction.exists_eq_restrict, cRk_restrict
restrictIndepMatroid 📖CompOp
2 mathmath: restrictIndepMatroid_Indep, restrictIndepMatroid_E
«term_ 📖CompOp—
«term_↟_» 📖CompOp—
«term_≀r_» 📖CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
finite_setOf_isRestriction 📖mathematical—Set.Finite
Matroid
setOf
IsRestriction
—Set.Finite.subset
Set.Finite.image
Set.Finite.finite_subsets
ground_finite
isBase_restrict_iff 📖mathematicalSet
Set.instHasSubset
E
IsBase
restrict
IsBasis
——
isBase_restrict_iff' 📖mathematical—IsBase
restrict
IsBasis'
——
isBasis'_iff_isBasis_restrict_univ 📖mathematical—IsBasis'
IsBasis
restrict
Set.univ
—isBasis_restrict_iff'
isBasis'_iff_isBasis_inter_ground
Set.subset_univ
isBasis'_restrict_iff 📖mathematical—IsBasis'
restrict
Set
Set.instInter
Set.instHasSubset
——
isBasis_restrict_iff 📖mathematicalSet
Set.instHasSubset
E
IsBasis
restrict
—isBasis_restrict_iff'
isBasis'_iff_isBasis_inter_ground
isBasis'_iff_isBasis
isBasis_restrict_iff' 📖mathematical—IsBasis
restrict
Set
Set.instInter
E
Set.instHasSubset
—isBasis_iff_isBasis'_subset_ground
isBasis'_restrict_iff
restrict_ground_eq
isBasis'_iff_isBasis_inter_ground
Set.inter_eq_self_of_subset_left
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
isRestriction_iff_exists 📖mathematical—IsRestriction
Set
Set.instHasSubset
E
restrict
—IsRestriction.exists_eq_restrict
restrict_isRestriction
ofMatroid_le_iff 📖mathematical—Matroidᔣ
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderMatroidᔣ
Matroidᔣ.ofMatroid
IsRestriction
——
ofMatroid_lt_iff 📖mathematical—Matroidᔣ
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderMatroidᔣ
Matroidᔣ.ofMatroid
IsStrictRestriction
——
restrictIndepMatroid_E 📖mathematical—IndepMatroid.E
restrictIndepMatroid
——
restrictIndepMatroid_Indep 📖mathematical—IndepMatroid.Indep
restrictIndepMatroid
Indep
Set
Set.instHasSubset
——
restrict_dep_iff 📖mathematical—Dep
restrict
Indep
Set
Set.instHasSubset
—Dep.eq_1
restrict_indep_iff
restrict_ground_eq
restrict_eq_restrict_iff 📖mathematical—restrict
Indep
—restrict_indep_iff
ext_indep
restrict_eq_self_iff 📖mathematical—restrict
E
—restrict_ground_eq_self
restrict_finitary 📖mathematical—Finitary
restrict
—indep_iff_forall_finite_subset_indep
Set.singleton_subset_iff
Set.toFinite
Finite.of_fintype
restrict_finite 📖mathematical—Finite
restrict
——
restrict_ground_eq 📖mathematical—E
restrict
——
restrict_ground_eq_self 📖mathematical—restrict
E
—ext_indep
restrict_idem 📖mathematical—restrict—restrict_restrict_eq
Set.Subset.rfl
restrict_indep_iff 📖mathematical—Indep
restrict
Set
Set.instHasSubset
——
restrict_isRestriction 📖mathematicalSet
Set.instHasSubset
E
IsRestriction
restrict
——
restrict_isStrictRestriction 📖mathematicalSet
Set.instHasSSubset
E
IsStrictRestriction
restrict
—IsRestriction.isStrictRestriction_of_ne
restrict_isRestriction
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
HasSSubset.SSubset.ne
Set.instIrreflSSubset
restrict_ground_eq
restrict_rankFinite 📖mathematical—RankFinite
restrict
—exists_isBase
IsBase.rankFinite_of_finite
Indep.finite
Indep.of_restrict
IsBase.indep
restrict_restrict_eq 📖mathematicalSet
Set.instHasSubset
restrict—ext_indep
HasSubset.Subset.trans
Set.instIsTransSubset

Matroid.Dep

Theorems

NameKindAssumesProvesValidatesDepends On
dep_isRestriction 📖—Matroid.Dep
Matroid.IsRestriction
Set
Set.instHasSubset
Matroid.E
——not_indep
of_isRestriction 📖—Matroid.Dep
Matroid.IsRestriction
——Matroid.restrict_dep_iff
HasSubset.Subset.trans
Set.instIsTransSubset

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
augment 📖mathematicalMatroid.Indep
ENat
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
Set.encard
Set
Set.instMembership
Set.instSDiff
Set.instInsert
—isBasis_iff_forall_insert_dep
Set.subset_union_left
Set.union_diff_left
subset_ground
Mathlib.Tactic.Push.not_and_eq
subset_isBasis_of_subset
Set.subset_union_right
LT.lt.not_ge
Matroid.IsBasis.encard_eq_encard
Set.encard_mono
augment_finset 📖mathematicalMatroid.Indep
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Finset.instMembership
Set
Set.instInsert
—augment
Set.encard_eq_coe_toFinset_card
Finset.toFinset_coe
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
exists_insert_of_not_isBasis 📖mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.IsBasis
Set.instMembership
Set.instSDiff
Set.instInsert
—exists_insert_of_not_isBase
indep_restrict_of_subset
Matroid.isBase_restrict_iff
Matroid.IsBasis.subset_ground
Matroid.restrict_indep_iff
exists_isBasis_subset_union_isBasis 📖mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.IsBasis
Set.instUnion—exists_isBase_subset_union_isBase
indep_restrict_of_subset
Matroid.IsBasis.isBase_restrict
Matroid.isBase_restrict_iff
Matroid.IsBasis.subset_ground
indep_isRestriction 📖—Matroid.Indep
Matroid.IsRestriction
Set
Set.instHasSubset
Matroid.E
———
indep_restrict_of_subset 📖mathematicalMatroid.Indep
Set
Set.instHasSubset
Matroid.restrict—Matroid.restrict_indep_iff
of_isRestriction 📖—Matroid.Indep
Matroid.IsRestriction
——of_restrict
of_restrict 📖—Matroid.Indep
Matroid.restrict
——Matroid.restrict_indep_iff

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
isBasis_of_isRestriction 📖mathematicalMatroid.IsBase
Matroid.IsRestriction
Matroid.IsBasis
Matroid.E
—Matroid.isBase_restrict_iff

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
encard_eq_encard 📖mathematicalMatroid.IsBasisSet.encard—Matroid.IsBasis'.encard_eq_encard
isBasis'
eq_exchange_of_diff_eq_singleton 📖mathematicalMatroid.IsBasis
Set
Set.instSDiff
Set.instSingletonSet
Set.instMembership
Set.instInsert
—Matroid.IsBase.eq_exchange_of_diff_eq_singleton
Matroid.isBase_restrict_iff
subset_ground
exchange 📖mathematicalMatroid.IsBasis
Set
Set.instMembership
Set.instSDiff
Set.instInsert
Set.instSingletonSet
—Matroid.IsBase.exchange
restrict_isBase
Matroid.isBase_restrict_iff
subset_ground
isBase_of_isBase_subset 📖—Matroid.IsBasis
Matroid.IsBase
Set
Set.instHasSubset
——Matroid.IsBase.isBase_of_isBasis_superset
isBase_restrict 📖mathematicalMatroid.IsBasisMatroid.IsBase
Matroid.restrict
—Matroid.isBase_restrict_iff
subset_ground
isBasis_isRestriction 📖—Matroid.IsBasis
Matroid.IsRestriction
Set
Set.instHasSubset
Matroid.E
——Matroid.isBasis_restrict_iff
isBasis_of_isBasis_of_subset_of_subset 📖—Matroid.IsBasis
Set
Set.instHasSubset
——isBasis_subset
Set.subset_inter
subset
Set.inter_subset_left
Set.inter_subset_right
transfer
isBasis_restrict_of_subset 📖mathematicalMatroid.IsBasis
Set
Set.instHasSubset
Matroid.restrict—Matroid.isBase_restrict_iff
Matroid.restrict_restrict_eq
subset_ground
of_isRestriction 📖—Matroid.IsBasis
Matroid.IsRestriction
——Matroid.isBasis_restrict_iff
restrict_isBase 📖mathematicalMatroid.IsBasisMatroid.IsBase
Matroid.restrict
—Matroid.isBase_restrict_iff
subset_ground
transfer 📖—Matroid.IsBasis
Set
Set.instHasSubset
——Matroid.isBase_restrict_iff
subset_ground
Matroid.IsBase.isBase_of_isBasis_superset
subset
isBasis_restrict_of_subset

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
encard_eq_encard 📖mathematicalMatroid.IsBasis'Set.encard—Matroid.IsBase.encard_eq_encard_of_isBase
Matroid.isBase_restrict_iff'
isBase_restrict 📖mathematicalMatroid.IsBasis'Matroid.IsBase
Matroid.restrict
—Matroid.isBase_restrict_iff'

Matroid.IsRestriction

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm 📖—Matroid.IsRestriction——LE.le.antisymm
Matroid.ofMatroid_le_iff
base_iff 📖mathematicalMatroid.IsRestrictionMatroid.IsBase
Matroid.IsBasis
Matroid.E
—Matroid.IsBase.isBasis_of_isRestriction
eq_restrict
Matroid.IsBasis.restrict_isBase
dep_iff 📖mathematicalMatroid.IsRestrictionMatroid.Dep
Set
Set.instHasSubset
Matroid.E
—Matroid.Dep.of_isRestriction
Matroid.Dep.subset_ground
Matroid.Dep.dep_isRestriction
eq_or_isStrictRestriction 📖mathematicalMatroid.IsRestrictionMatroid.IsStrictRestriction—eq_or_lt_of_le
Matroid.ofMatroid_le_iff
eq_restrict 📖mathematicalMatroid.IsRestrictionMatroid.restrict
Matroid.E
—Matroid.restrict_ground_eq
exists_eq_restrict 📖mathematicalMatroid.IsRestrictionSet
Set.instHasSubset
Matroid.E
Matroid.restrict
——
finitary 📖mathematicalMatroid.IsRestrictionMatroid.Finitary—Matroid.restrict_finitary
finite 📖mathematicalMatroid.IsRestrictionMatroid.Finite—Matroid.restrict_finite
Set.Finite.subset
Matroid.ground_finite
indep_iff 📖mathematicalMatroid.IsRestrictionMatroid.Indep
Set
Set.instHasSubset
Matroid.E
—Matroid.Indep.of_isRestriction
Matroid.Indep.subset_ground
Matroid.Indep.indep_isRestriction
isBasis_iff 📖mathematicalMatroid.IsRestrictionMatroid.IsBasis
Set
Set.instHasSubset
Matroid.E
—Matroid.IsBasis.of_isRestriction
Matroid.IsBasis.subset_ground
Matroid.IsBasis.isBasis_isRestriction
isStrictRestriction_of_ground_ne 📖mathematicalMatroid.IsRestrictionMatroid.IsStrictRestriction—eq_restrict
Matroid.restrict_isStrictRestriction
HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
subset
isStrictRestriction_of_ne 📖mathematicalMatroid.IsRestrictionMatroid.IsStrictRestriction—antisymm
of_subset 📖mathematicalSet
Set.instHasSubset
Matroid.IsRestriction
Matroid.restrict
—Matroid.restrict_restrict_eq
Matroid.restrict_isRestriction
rankFinite 📖mathematicalMatroid.IsRestrictionMatroid.RankFinite—Matroid.restrict_rankFinite
refl 📖mathematical—Matroid.IsRestriction—le_refl
subset 📖mathematicalMatroid.IsRestrictionSet
Set.instHasSubset
Matroid.E
——
trans 📖—Matroid.IsRestriction——le_trans

Matroid.IsStrictRestriction

Theorems

NameKindAssumesProvesValidatesDepends On
eq_restrict 📖mathematicalMatroid.IsStrictRestrictionMatroid.restrict
Matroid.E
—Matroid.IsRestriction.eq_restrict
isRestriction
exists_eq_restrict 📖mathematicalMatroid.IsStrictRestrictionSet
Set.instHasSSubset
Matroid.E
Matroid.restrict
—ssubset
eq_restrict
irrefl 📖mathematical—Matroid.IsStrictRestriction—ne
isRestriction 📖mathematicalMatroid.IsStrictRestrictionMatroid.IsRestriction——
ne 📖—Matroid.IsStrictRestriction——Matroid.ofMatroid_lt_iff
of_ssubset 📖mathematicalSet
Set.instHasSSubset
Matroid.IsStrictRestriction
Matroid.restrict
—Matroid.IsRestriction.isStrictRestriction_of_ground_ne
Matroid.IsRestriction.of_subset
HasSSubset.SSubset.subset
Set.instIsNonstrictStrictOrderSubsetSSubset
HasSSubset.SSubset.ne
Set.instIrreflSSubset
ssubset 📖mathematicalMatroid.IsStrictRestrictionSet
Set.instHasSSubset
Matroid.E
—HasSubset.Subset.ssubset_of_ne
Set.instIsNonstrictStrictOrderSubsetSSubset
Set.instAntisymmSubset
Matroid.IsRestriction.subset
isRestriction
Set.Subset.rfl
Matroid.restrict_idem
Matroid.restrict_ground_eq_self

Matroid.Matroidᔣ

Definitions

NameCategoryTheorems
toMatroid 📖CompOp
4 mathmath: le_iff, ext_iff, coe_inj, lt_iff

Theorems

NameKindAssumesProvesValidatesDepends On
coe_inj 📖mathematical—toMatroid—ext_iff
ext 📖—toMatroid———
ext_iff 📖mathematical—toMatroid—ext
le_iff 📖mathematical—Matroid.Matroidᔣ
Preorder.toLE
PartialOrder.toPreorder
Matroid.instPartialOrderMatroidᔣ
Matroid.IsRestriction
toMatroid
——
lt_iff 📖mathematical—Matroid.Matroidᔣ
Preorder.toLT
PartialOrder.toPreorder
Matroid.instPartialOrderMatroidᔣ
Matroid.IsStrictRestriction
toMatroid
——

---

← Back to Index