Documentation Verification Report

Cardinal

πŸ“ Source: Mathlib/Combinatorics/Matroid/Rank/Cardinal.lean

Statistics

MetricCount
DefinitionsInvariantCardinalRank, cRank, cRk
3
TheoremscRk_eq_cardinalMk, cardinalMk_le_cRank, cardinalMk_le_cRk_of_subset, cardinalMk_le_isBase, cardinalMk_le_isBasis, cardinalMk_le_isBasis', isBase_of_cRank_le, isBase_of_cRank_le_of_finite, forall_card_isBasis_diff, cardinalMk_diff_comm, cardinalMk_eq, cardinalMk_eq_cRank, cardinalMk_le_cRank, cardinalMk_diff_comm, cardinalMk_eq, cardinalMk_eq_cRk, cardinalMk_le_cRk, cardinalMk_diff_comm, cardinalMk_eq, cardinalMk_eq_cRk, cardinalMk_le_cRk, cRank_le_cardinalMk, isBase_of_le_cRank, isBase_of_le_cRank_of_finite, cRank_eq_iSup_cardinalMk_indep, cRank_le_iff, cRank_restrict, cRk_closure, cRk_closure_congr, cRk_comap, cRk_comap_lift, cRk_ground, cRk_insert_closure_eq, cRk_inter_add_cRk_union_le, cRk_inter_ground, cRk_le_cardinalMk, cRk_le_iff, cRk_le_of_subset, cRk_map_eq, cRk_map_image, cRk_map_image_lift, cRk_mono, cRk_restrict, cRk_restrict_subset, cRk_union_closure_eq, cRk_union_closure_left_eq, cRk_union_closure_right_eq, invariantCardinalRank_comap, invariantCardinalRank_iff, invariantCardinalRank_map, invariantCardinalRank_of_finitary, invariantCardinalRank_restrict, isRkFinite_iff_cRk_lt_aleph0, rankFinite_iff_cRank_lt_aleph0, rankInfinite_iff_aleph0_le_cRank, toENat_cRank_eq, toENat_cRk_eq
57
Total60

Matroid

Definitions

NameCategoryTheorems
InvariantCardinalRank πŸ“–CompData
5 mathmath: invariantCardinalRank_map, invariantCardinalRank_comap, invariantCardinalRank_of_finitary, invariantCardinalRank_iff, invariantCardinalRank_restrict
cRank πŸ“–CompOp
12 mathmath: IsBase.cardinalMk_le_cRank, cRank_eq_iSup_cardinalMk_indep, cRk_ground, AlgebraicIndependent.matroid_cRank_eq, IsBase.cardinalMk_eq_cRank, cRank_le_iff, Indep.cardinalMk_le_cRank, rankInfinite_iff_aleph0_le_cRank, cRank_restrict, rankFinite_iff_cRank_lt_aleph0, Spanning.cRank_le_cardinalMk, toENat_cRank_eq
cRk πŸ“–CompOp
29 mathmath: cRk_union_closure_left_eq, Indep.cardinalMk_le_cRk_of_subset, cRk_comap_lift, isRkFinite_iff_cRk_lt_aleph0, cRk_restrict_subset, cRk_inter_ground, cRk_ground, cRk_le_cardinalMk, cRk_closure, cRk_mono, IsBasis.cardinalMk_le_cRk, cRk_map_eq, IsBasis'.cardinalMk_eq_cRk, cRk_union_closure_eq, cRk_insert_closure_eq, cRk_map_image, cRk_le_iff, cRank_restrict, cRk_inter_add_cRk_union_le, cRk_map_image_lift, cRk_comap, IsBasis.cardinalMk_eq_cRk, cRk_closure_congr, Indep.cRk_eq_cardinalMk, cRk_le_of_subset, cRk_union_closure_right_eq, IsBasis'.cardinalMk_le_cRk, toENat_cRk_eq, cRk_restrict

Theorems

NameKindAssumesProvesValidatesDepends On
cRank_eq_iSup_cardinalMk_indep πŸ“–mathematicalβ€”cRank
iSup
Cardinal
Set
Indep
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
Cardinal.instConditionallyCompleteLinearOrderBot
Set.Elem
β€”LE.le.antisymm
ciSup_le'
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
IsBase.indep
le_refl
Indep.exists_isBase_superset
Cardinal.mk_le_mk_of_subset
cRank_le_iff πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
cRank
Set.Elem
β€”LE.le.trans
IsBase.cardinalMk_le_cRank
ciSup_le
instNonemptySubtypeSetIsBase
cRank_restrict πŸ“–mathematicalβ€”cRank
restrict
cRk
β€”β€”
cRk_closure πŸ“–mathematicalβ€”cRk
closure
β€”exists_isBasis'
IsBasis.cardinalMk_eq_cRk
IsBasis'.isBasis_closure_right
IsBasis'.cardinalMk_eq_cRk
cRk_closure_congr πŸ“–mathematicalclosurecRkβ€”cRk_closure
cRk_comap πŸ“–mathematicalβ€”cRk
comap
Set.image
β€”cRk_comap_lift
cRk_comap_lift πŸ“–mathematicalβ€”Cardinal.lift
cRk
comap
Set.image
β€”cRk.eq_1
cRank.eq_1
le_antisymm_iff
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le_iff
instNonemptySubtypeSetIsBase
univLE_of_max
Cardinal.mk_image_eq_of_injOn_lift
Cardinal.lift_le
IsBasis'.cardinalMk_le_cRk
Set.exists_subset_bijOn
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
Set.BijOn.image_eq
Set.image_preimage_inter
Set.inter_eq_self_of_subset_left
IsBasis'.subset
Set.BijOn.injOn
comap_isBasis'_iff
cRk_ground πŸ“–mathematicalβ€”cRk
E
cRank
β€”cRk.eq_1
restrict_ground_eq_self
cRk_insert_closure_eq πŸ“–mathematicalβ€”cRk
Set
Set.instInsert
closure
β€”Set.union_singleton
cRk_union_closure_left_eq
cRk_inter_add_cRk_union_le πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
Cardinal.instAdd
cRk
Set
Set.instInter
Set.instUnion
β€”exists_isBasis'
Indep.subset_isBasis'_of_subset
IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
Set.inter_subset_left
Set.inter_subset_right
cRk_union_closure_eq
IsBasis'.closure_eq_closure
IsBasis'.cardinalMk_eq_cRk
Cardinal.mk_union_add_mk_inter
add_comm
add_le_add
Cardinal.addLeftMono
Cardinal.addRightMono
cRk_le_cardinalMk
Cardinal.mk_le_mk_of_subset
Set.subset_inter
cRk_inter_ground πŸ“–mathematicalβ€”cRk
Set
Set.instInter
E
β€”LE.le.antisymm
cRk_le_of_subset
Set.inter_subset_left
cRk_le_iff
IsBasis.cardinalMk_le_cRk
IsBasis'.isBasis_inter_ground
cRk_le_cardinalMk πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
cRk
Set.Elem
β€”ciSup_le
instNonemptySubtypeSetIsBase
Cardinal.mk_le_mk_of_subset
IsBase.subset_ground
cRk_le_iff πŸ“–mathematicalβ€”Cardinal
Cardinal.instLE
cRk
Set.Elem
β€”β€”
cRk_le_of_subset πŸ“–mathematicalSet
Set.instHasSubset
Cardinal
Cardinal.instLE
cRk
β€”cRk_mono
cRk_map_eq πŸ“–mathematicalSet.InjOn
E
cRk
map
Set.preimage
β€”cRk_inter_ground
cRk_map_image
Set.image_preimage_inter
map_ground
cRk_map_image πŸ“–mathematicalSet.InjOn
E
Set
Set.instHasSubset
cRk
map
Set.image
β€”cRk_map_image_lift
cRk_map_image_lift πŸ“–mathematicalSet.InjOn
E
Set
Set.instHasSubset
Cardinal.lift
cRk
map
Set.image
β€”cRk.eq_1
cRank.eq_1
le_antisymm_iff
Cardinal.lift_iSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
ciSup_le_iff
instNonemptySubtypeSetIsBase
univLE_of_max
isBasis'_iff_isBasis
Set.image_mono
map_isBasis_iff'
Cardinal.mk_image_eq_of_injOn_lift
Set.InjOn.mono
Indep.subset_ground
IsBasis.indep
Cardinal.lift_le
IsBasis.cardinalMk_le_cRk
Set.InjOn.image_eq_image_iff
IsBasis.subset_ground
IsBasis.map
cRk_mono πŸ“–mathematicalβ€”Monotone
Set
Cardinal
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Cardinal.partialOrder
cRk
β€”Indep.subset_isBasis'_of_subset
IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
LE.le.trans
Cardinal.mk_le_mk_of_subset
IsBasis'.cardinalMk_le_cRk
cRk_restrict πŸ“–mathematicalβ€”cRk
restrict
Set
Set.instInter
β€”cRk_inter_ground
restrict_ground_eq
cRk_restrict_subset
Set.inter_subset_right
Set.inter_comm
cRk_restrict_subset πŸ“–mathematicalSet
Set.instHasSubset
cRk
restrict
β€”Set.inter_eq_self_of_subset_left
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
IsBasis'.cardinalMk_le_cRk
cRk_union_closure_eq πŸ“–mathematicalβ€”cRk
Set
Set.instUnion
closure
β€”cRk_union_closure_right_eq
cRk_union_closure_left_eq
cRk_union_closure_left_eq πŸ“–mathematicalβ€”cRk
Set
Set.instUnion
closure
β€”cRk_closure_congr
closure_union_closure_left_eq
cRk_union_closure_right_eq πŸ“–mathematicalβ€”cRk
Set
Set.instUnion
closure
β€”cRk_closure_congr
closure_union_closure_right_eq
invariantCardinalRank_comap πŸ“–mathematicalβ€”InvariantCardinalRank
comap
β€”comap_isBasis_iff
Cardinal.mk_image_eq_of_injOn_lift
Set.InjOn.mono
Set.diff_subset
Set.InjOn.image_diff
Set.diff_union_diff_cancel
Set.inter_subset_left
Set.image_inter_subset
Set.inter_comm
Set.diff_inter_self_eq_diff
Cardinal.mk_union_of_disjoint
Disjoint.mono_right
HasSubset.Subset.trans
Set.instIsTransSubset
Set.disjoint_sdiff_left
IsBasis.cardinalMk_diff_comm
invariantCardinalRank_iff πŸ“–mathematicalβ€”InvariantCardinalRank
Set.Elem
Set
Set.instSDiff
β€”β€”
invariantCardinalRank_map πŸ“–mathematicalSet.InjOn
E
InvariantCardinalRank
map
β€”map_isBasis_iff'
IsBasis.cardinalMk_diff_comm
Set.diff_self_inter
Set.diff_inter_self_eq_diff
Set.InjOn.image_inter
Indep.subset_ground
IsBasis.indep
Set.inter_comm
Set.InjOn.image_diff
Set.InjOn.mono
Cardinal.mk_image_eq_of_injOn_lift
Indep.diff
Set.InjOn.image_eq_image_iff
IsBasis.subset_ground
invariantCardinalRank_of_finitary πŸ“–mathematicalβ€”InvariantCardinalRankβ€”Set.cast_ncard
IsBase.diff_finite_comm
IsBase.ncard_diff_comm
le_refl
IsBase.insert_dep
IsBase.subset_ground
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Mathlib.Tactic.Push.not_and_eq
Finitary.indep_of_forall_finite
Indep.subset
Set.Finite.to_subtype
Set.Finite.diff
Set.diff_singleton_subset_iff
Set.subset_insert_diff_singleton
Set.diff_inter_self_eq_diff
Set.diff_subset_iff
Set.inter_comm
Set.union_subset
Set.inter_subset_left
Set.iUnion_subset
IsBase.exists_insert_of_ssubset
Set.insert_subset_insert
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_iUnion_of_subset
subset_rfl
Set.instReflSubset
Set.subset_union_right
LE.le.trans
Cardinal.mk_le_mk_of_subset
Cardinal.mk_iUnion_le
Cardinal.mul_le_max_of_aleph0_le_left
Set.infinite_coe_iff
Set.Infinite.eq_1
ciSup_le'
LT.lt.le
Cardinal.lt_aleph0_of_finite
LE.le.antisymm
restrict_finitary
IsBasis.isBase_restrict
invariantCardinalRank_restrict πŸ“–mathematicalβ€”InvariantCardinalRank
restrict
β€”IsBasis.cardinalMk_diff_comm
isBasis_restrict_iff'
isRkFinite_iff_cRk_lt_aleph0 πŸ“–mathematicalβ€”IsRkFinite
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
cRk
Cardinal.aleph0
β€”IsRkFinite.eq_1
rankFinite_iff_cRank_lt_aleph0
cRank_restrict
rankFinite_iff_cRank_lt_aleph0 πŸ“–mathematicalβ€”RankFinite
Cardinal
Preorder.toLT
PartialOrder.toPreorder
Cardinal.partialOrder
cRank
Cardinal.aleph0
β€”Cardinal.lt_aleph0_iff_finite
IsBase.cardinalMk_eq_cRank
invariantCardinalRank_of_finitary
finitary_of_rankFinite
exists_isBase
LE.le.trans_lt
IsBase.cardinalMk_le_cRank
rankInfinite_iff_aleph0_le_cRank πŸ“–mathematicalβ€”RankInfinite
Cardinal
Cardinal.instLE
Cardinal.aleph0
cRank
β€”not_lt
rankFinite_iff_cRank_lt_aleph0
not_rankFinite_iff
toENat_cRank_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
cRank
eRank
β€”rankFinite_or_rankInfinite
exists_isBase
IsBase.cardinalMk_eq_cRank
invariantCardinalRank_of_finitary
finitary_of_rankFinite
IsBase.encard_eq_eRank
Set.toENat_cardinalMk
eRank_eq_top
rankInfinite_iff_aleph0_le_cRank
toENat_cRk_eq πŸ“–mathematicalβ€”DFunLike.coe
OrderRingHom
Cardinal
ENat
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Cardinal.commSemiring
PartialOrder.toPreorder
Cardinal.partialOrder
instCommSemiringENat
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
OrderRingHom.instFunLike
Cardinal.toENat
cRk
eRk
β€”cRk.eq_1
toENat_cRank_eq
eRk.eq_1

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
cRk_eq_cardinalMk πŸ“–mathematicalMatroid.IndepSet.Elem
Matroid.cRk
β€”LE.le.antisymm'
Matroid.cRk_le_cardinalMk
Matroid.IsBasis.cardinalMk_le_cRk
isBasis_self
cardinalMk_le_cRank πŸ“–mathematicalMatroid.IndepCardinal
Cardinal.instLE
Set.Elem
Matroid.cRank
β€”exists_isBase_superset
le_ciSup_of_le
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self
Cardinal.mk_le_mk_of_subset
cardinalMk_le_cRk_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
Cardinal
Cardinal.instLE
Set.Elem
Matroid.cRk
β€”subset_isBasis'_of_subset
LE.le.trans
Cardinal.mk_le_mk_of_subset
Matroid.IsBasis'.cardinalMk_le_cRk
cardinalMk_le_isBase πŸ“–mathematicalMatroid.Indep
Matroid.IsBase
Cardinal
Cardinal.instLE
Set.Elem
β€”exists_isBase_superset
Cardinal.mk_le_mk_of_subset
Matroid.IsBase.cardinalMk_eq
cardinalMk_le_isBasis πŸ“–mathematicalMatroid.Indep
Matroid.IsBasis
Set
Set.instHasSubset
Cardinal
Cardinal.instLE
Set.Elem
β€”cardinalMk_le_isBasis'
Matroid.IsBasis.isBasis'
cardinalMk_le_isBasis' πŸ“–mathematicalMatroid.Indep
Matroid.IsBasis'
Set
Set.instHasSubset
Cardinal
Cardinal.instLE
Set.Elem
β€”subset_isBasis'_of_subset
Cardinal.mk_le_mk_of_subset
Matroid.IsBasis'.cardinalMk_eq
isBase_of_cRank_le πŸ“–mathematicalMatroid.Indep
Cardinal
Cardinal.instLE
Matroid.cRank
Set.Elem
Matroid.IsBaseβ€”isBase_of_maximal
Set.Finite.eq_of_subset_of_encard_le
finite
OrderRingHom.monotone'
LE.le.trans
cardinalMk_le_cRank
isBase_of_cRank_le_of_finite πŸ“–mathematicalMatroid.Indep
Cardinal
Cardinal.instLE
Matroid.cRank
Set.Elem
Matroid.IsBaseβ€”Matroid.rankFinite_iff_cRank_lt_aleph0
LE.le.trans_lt
Cardinal.lt_aleph0_iff_finite
isBase_of_cRank_le

Matroid.InvariantCardinalRank

Theorems

NameKindAssumesProvesValidatesDepends On
forall_card_isBasis_diff πŸ“–mathematicalMatroid.IsBasisSet.Elem
Set
Set.instSDiff
β€”β€”

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_diff_comm πŸ“–mathematicalMatroid.IsBaseSet.Elem
Set
Set.instSDiff
β€”Matroid.IsBasis.cardinalMk_diff_comm
isBasis_ground
cardinalMk_eq πŸ“–mathematicalMatroid.IsBaseSet.Elemβ€”Matroid.IsBasis.cardinalMk_eq
isBasis_ground
cardinalMk_eq_cRank πŸ“–mathematicalMatroid.IsBaseSet.Elem
Matroid.cRank
β€”cardinalMk_eq
ciSup_const
Matroid.instNonemptySubtypeSetIsBase
cardinalMk_le_cRank πŸ“–mathematicalMatroid.IsBaseCardinal
Cardinal.instLE
Set.Elem
Matroid.cRank
β€”le_ciSup
Cardinal.bddAbove_range
small_subtype
small_set
UnivLE.small
UnivLE.self

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_diff_comm πŸ“–mathematicalMatroid.IsBasisSet.Elem
Set
Set.instSDiff
β€”Matroid.InvariantCardinalRank.forall_card_isBasis_diff
cardinalMk_eq πŸ“–mathematicalMatroid.IsBasisSet.Elemβ€”Set.diff_union_inter
Cardinal.mk_union_of_disjoint
Disjoint.mono_right
Set.inter_subset_right
Set.disjoint_sdiff_left
cardinalMk_diff_comm
Set.inter_subset_left
Set.inter_comm
cardinalMk_eq_cRk πŸ“–mathematicalMatroid.IsBasisSet.Elem
Matroid.cRk
β€”Matroid.IsBasis'.cardinalMk_eq_cRk
isBasis'
cardinalMk_le_cRk πŸ“–mathematicalMatroid.IsBasisCardinal
Cardinal.instLE
Set.Elem
Matroid.cRk
β€”Matroid.IsBasis'.cardinalMk_le_cRk
isBasis'

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
cardinalMk_diff_comm πŸ“–mathematicalMatroid.IsBasis'Set.Elem
Set
Set.instSDiff
β€”Matroid.IsBasis.cardinalMk_diff_comm
isBasis_inter_ground
cardinalMk_eq πŸ“–mathematicalMatroid.IsBasis'Set.Elemβ€”Matroid.IsBasis.cardinalMk_eq
isBasis_inter_ground
cardinalMk_eq_cRk πŸ“–mathematicalMatroid.IsBasis'Set.Elem
Matroid.cRk
β€”Matroid.cRk.eq_1
Matroid.IsBase.cardinalMk_eq_cRank
Matroid.invariantCardinalRank_restrict
Matroid.isBase_restrict_iff'
cardinalMk_le_cRk πŸ“–mathematicalMatroid.IsBasis'Cardinal
Cardinal.instLE
Set.Elem
Matroid.cRk
β€”Matroid.IsBase.cardinalMk_le_cRank
Matroid.isBase_restrict_iff'

Matroid.Spanning

Theorems

NameKindAssumesProvesValidatesDepends On
cRank_le_cardinalMk πŸ“–mathematicalMatroid.SpanningCardinal
Cardinal.instLE
Matroid.cRank
Set.Elem
β€”exists_isBase_subset
Eq.trans_le
Matroid.IsBase.cardinalMk_eq_cRank
Cardinal.mk_le_mk_of_subset
isBase_of_le_cRank πŸ“–mathematicalMatroid.Spanning
Cardinal
Cardinal.instLE
Set.Elem
Matroid.cRank
Matroid.IsBaseβ€”exists_isBase_subset
Set.Finite.eq_of_subset_of_encard_le
Matroid.IsBase.finite
OrderRingHom.monotone'
LE.le.trans
Eq.ge
Matroid.IsBase.cardinalMk_eq_cRank
Matroid.invariantCardinalRank_of_finitary
Matroid.finitary_of_rankFinite
isBase_of_le_cRank_of_finite πŸ“–mathematicalMatroid.Spanning
Cardinal
Cardinal.instLE
Set.Elem
Matroid.cRank
Matroid.IsBaseβ€”exists_isBase_subset
Matroid.IsBase.rankFinite_of_finite
Set.Finite.subset
isBase_of_le_cRank

---

← Back to Index