Documentation Verification Report

ENat

πŸ“ Source: Mathlib/Combinatorics/Matroid/Rank/ENat.lean

Statistics

MetricCount
DefinitionseRank, eRk
2
TheoremseRk_lt_encard, eRk_eq_encard, encard_le_eRank, encard_le_eRk_of_subset, exists_insert_of_encard_lt, isBase_of_eRk_ge, isBasis'_of_eRk_ge, isBasis_of_eRk_ge, eRk_eq_eRank, encard_compl_eq, encard_eq_eRank, eRk_eq_eRk, eRk_eq_eRk_insert, eRk_eq_eRk_union, eRk_eq_encard, encard_eq_eRk, eRk_eq_eRk, eRk_eq_eRk_insert, eRk_eq_eRk_union, eRk_eq_encard, encard_eq_eRk, eRk_add_one_eq, eRk_eq, eRk_eq, closure_eq_closure_of_subset_of_eRk_ge_eRk, closure_eq_closure_of_subset_of_forall_insert, eRk_lt_top, indep_of_encard_le_eRk, isBasis_of_subset_closure_of_subset_of_encard_le, eRank_restrict, eRk_eq, eRank_add_eRank_dual, eRank_def, eRank_emptyOn, eRank_eq_top, eRank_eq_top_iff, eRank_eq_zero_iff, eRank_freeOn, eRank_le_encard_add_eRk_compl, eRank_le_encard_ground, eRank_loopyOn, eRank_lt_top_iff, eRank_map, eRank_ne_top_iff, eRank_restrict, eRk_closure_eq, eRk_comap, eRk_compl_insert_union_add_eRk_compl_insert_inter_le, eRk_compl_union_add_eRk_compl_inter_le, eRk_compl_union_of_disjoint, eRk_dual_add_eRank, eRk_dual_add_eRank', eRk_empty, eRk_eq_eRank, eRk_eq_eRk_diff_eRk_le_zero, eRk_eq_eRk_of_subset_of_le, eRk_eq_eRk_union_eRk_le_zero, eRk_eq_of_eRk_insert_le_forall, eRk_eq_one_iff, eRk_eq_top_iff, eRk_eq_zero_iff, eRk_eq_zero_iff', eRk_freeOn, eRk_ground, eRk_ground_inter, eRk_ground_union, eRk_insert_closure_eq, eRk_insert_eq_add_one, eRk_insert_inter_add_eRk_insert_union_le, eRk_insert_le_add_one, eRk_insert_of_notMem_ground, eRk_inter_add_eRk_union_le, eRk_inter_ground, eRk_le_eRank, eRk_le_eRk_add_eRk_diff, eRk_le_eRk_inter_add_eRk_diff, eRk_le_encard, eRk_le_iff, eRk_le_one_iff, eRk_loops, eRk_loopyOn, eRk_lt_encard_iff_dep, eRk_lt_encard_iff_dep_of_finite, eRk_lt_encard_of_dep_of_finite, eRk_lt_top_iff, eRk_map, eRk_mono, eRk_ne_top_iff, eRk_singleton_eq, eRk_singleton_eq_one_iff, eRk_singleton_le, eRk_submod, eRk_union_closure_left_eq, eRk_union_closure_right_eq, eRk_union_ground, eRk_union_le_eRk_add_eRk, eRk_union_le_eRk_add_encard, eRk_union_le_encard_add_eRk, eRk_univ_eq, eq_eRk_iff, eq_loopyOn_iff_eRank, exists_eRk_insert_eq_add_one_of_lt, exists_of_eRank_eq_zero, indep_iff_eRk_eq_encard, indep_iff_eRk_eq_encard_of_finite, isBasis'_iff_indep_encard_eq_of_finite, isBasis_iff_indep_encard_eq_of_finite, le_eRk_iff, one_le_eRank, restrict_eRk_eq, restrict_eRk_eq', spanning_iff_eRk_le, spanning_iff_eRk_le'
113
Total115

Matroid

Definitions

NameCategoryTheorems
eRank πŸ“–CompOp
32 mathmath: IsBase.encard_eq_eRank, eRank_loopyOn, eRank_map, Spanning.eRank_restrict, eRank_le_encard_add_eRk_compl, eRank_freeOn, eRank_eq_top, eRk_dual_add_eRank', eRank_eq_top_iff, eRank_emptyOn, spanning_iff_eRk_le', eRk_union_ground, eRk_dual_add_eRank, eRk_univ_eq, eRank_le_encard_ground, eRank_lt_top_iff, Indep.encard_le_eRank, eRank_def, Spanning.eRk_eq, eRank_restrict, eRk_ground, eRank_eq_zero_iff, eRk_ground_union, eRk_le_eRank, eRank_add_eRank_dual, IsBase.eRk_eq_eRank, eq_loopyOn_iff_eRank, one_le_eRank, toENat_cRank_eq, IsBase.encard_compl_eq, spanning_iff_eRk_le, eRk_eq_eRank
eRk πŸ“–CompOp
82 mathmath: eRk_insert_closure_eq, eRk_lt_top_iff, eRk_loops, eRk_lt_encard_iff_dep, eRk_empty, eRk_singleton_le, eRk_mono, eRank_le_encard_add_eRk_compl, Indep.eRk_eq_encard, isBasis_iff_indep_encard_eq_of_finite, le_eRk_iff, IsNonloop.eRk_eq, eRk_union_closure_left_eq, eRk_lt_encard_iff_dep_of_finite, eRk_map, IsBasis.eRk_eq_encard, eRk_dual_add_eRank', eRk_compl_union_of_disjoint, eRk_le_eRk_add_eRk_diff, eRk_compl_insert_union_add_eRk_compl_insert_inter_le, IsBasis'.encard_eq_eRk, eRk_insert_le_add_one, spanning_iff_eRk_le', IsBasis.eRk_eq_eRk_insert, eRk_union_ground, eRk_inter_add_eRk_union_le, IsBasis.encard_eq_eRk, eRk_dual_add_eRank, eRk_univ_eq, IsRkFinite.eRk_lt_top, Indep.encard_le_eRk_of_subset, IsBasis'.eRk_eq_encard, eRk_insert_inter_add_eRk_insert_union_le, eRank_def, eRk_inter_ground, IsBasis.eRk_eq_eRk_union, Spanning.eRk_eq, eRank_restrict, eRk_le_iff, eRk_eq_top_iff, eRk_loopyOn, IsLoop.eRk_eq, indep_iff_eRk_eq_encard_of_finite, eRk_ground_inter, eRk_union_le_eRk_add_eRk, eRk_le_eRk_inter_add_eRk_diff, eRk_ground, IsCircuit.eRk_add_one_eq, eRk_eq_one_iff, eRk_ground_union, restrict_eRk_eq', eRk_comap, eRk_eq_zero_iff', IsBasis'.eRk_eq_eRk_union, eRk_le_eRank, restrict_eRk_eq, eRk_eq_zero_iff, eRk_union_closure_right_eq, eRk_lt_encard_of_dep_of_finite, IsBasis.eRk_eq_eRk, indep_iff_eRk_eq_encard, eRk_freeOn, eRk_union_le_encard_add_eRk, eRk_union_le_eRk_add_encard, eRk_insert_eq_add_one, eRk_singleton_eq, IsBasis'.eRk_eq_eRk, IsBasis'.eRk_eq_eRk_insert, Dep.eRk_lt_encard, eRk_insert_of_notMem_ground, isBasis'_iff_indep_encard_eq_of_finite, eRk_compl_union_add_eRk_compl_inter_le, eq_eRk_iff, IsBase.eRk_eq_eRank, eRk_le_one_iff, eRk_singleton_eq_one_iff, eRk_le_encard, eRk_submod, spanning_iff_eRk_le, eRk_eq_eRank, toENat_cRk_eq, eRk_closure_eq

Theorems

NameKindAssumesProvesValidatesDepends On
eRank_add_eRank_dual πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRank
dual
Set.encard
E
β€”exists_isBase
IsBase.encard_eq_eRank
IsBase.compl_isBase_dual
Set.encard_union_eq
Set.disjoint_sdiff_right
Set.union_diff_cancel
IsBase.subset_ground
eRank_def πŸ“–mathematicalβ€”eRank
eRk
E
β€”eRk.eq_1
restrict_ground_eq_self
eRank_emptyOn πŸ“–mathematicalβ€”eRank
emptyOn
ENat
instZeroENat
β€”eRank_eq_zero_iff
emptyOn_ground
loopyOn_empty
eRank_eq_top πŸ“–mathematicalβ€”eRank
Top.top
ENat
instTopENat
β€”eRank_eq_top_iff
eRank_eq_top_iff πŸ“–mathematicalβ€”eRank
Top.top
ENat
instTopENat
RankInfinite
β€”not_rankFinite_iff
eRank_ne_top_iff
eRank_eq_zero_iff πŸ“–mathematicalβ€”eRank
ENat
instZeroENat
loopyOn
E
β€”closure_empty_eq_ground_iff
exists_isBase
Set.encard_eq_zero
IsBase.encard_eq_eRank
IsBase.closure_eq
eRank_loopyOn
eRank_freeOn πŸ“–mathematicalβ€”eRank
freeOn
Set.encard
β€”eRank_def
freeOn_ground
Indep.eRk_eq_encard
freeOn_indep_iff
Eq.subset
Set.instReflSubset
eRank_le_encard_add_eRk_compl πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRank
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.encard
eRk
Set
Set.instSDiff
E
β€”le_trans
eRk_inter_ground
eRank_def
Set.union_diff_self
Set.union_inter_cancel_right
le_refl
eRk_union_le_encard_add_eRk
eRank_le_encard_ground πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRank
Set.encard
E
β€”Eq.trans_le
eRank_def
eRk_le_encard
eRank_loopyOn πŸ“–mathematicalβ€”eRank
loopyOn
ENat
instZeroENat
β€”eRank_def
eRk_loopyOn
eRank_lt_top_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRank
Top.top
instTopENat
RankFinite
β€”β€”
eRank_map πŸ“–mathematicalSet.InjOn
E
eRank
map
β€”exists_isBase
IsBase.encard_eq_eRank
IsBase.map
Set.InjOn.encard_image
Set.InjOn.mono
IsBase.subset_ground
eRank_ne_top_iff πŸ“–mathematicalβ€”RankFiniteβ€”exists_isBase
IsBase.encard_eq_eRank
Set.encard_ne_top_iff
IsBase.rankFinite_of_finite
IsBase.finite
eRank_restrict πŸ“–mathematicalβ€”eRank
restrict
eRk
β€”β€”
eRk_closure_eq πŸ“–mathematicalβ€”eRk
closure
β€”exists_isBasis'
IsBasis'.closure_eq_closure
IsBasis.encard_eq_eRk
Indep.isBasis_closure
IsBasis'.indep
IsBasis'.encard_eq_eRk
eRk_comap πŸ“–mathematicalβ€”eRk
comap
Set.image
β€”exists_isBasis'
comap_isBasis'_iff
IsBasis'.encard_eq_eRk
Set.InjOn.encard_image
eRk_compl_insert_union_add_eRk_compl_insert_inter_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
Set
Set.instSDiff
E
Set.instInsert
Set.instUnion
Set.instInter
β€”Set.insert_union_distrib
Set.insert_inter_distrib
eRk_compl_union_add_eRk_compl_inter_le
eRk_compl_union_add_eRk_compl_inter_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
Set
Set.instSDiff
E
Set.instUnion
Set.instInter
β€”Set.diff_inter_diff
Set.diff_inter
eRk_submod
eRk_compl_union_of_disjoint πŸ“–mathematicalDisjoint
Set
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
eRk
Set.instUnion
Set.instSDiff
E
β€”eRk_inter_ground
Set.union_inter_distrib_right
Set.inter_eq_self_of_subset_left
Set.diff_subset
Set.union_eq_self_of_subset_right
Set.subset_diff
Set.inter_subset_right
Disjoint.mono_left
Set.inter_subset_left
Disjoint.symm
eRk_dual_add_eRank πŸ“–mathematicalSet
Set.instHasSubset
E
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
dual
eRank
Set.instSDiff
Set.encard
β€”exists_isBasis
IsBasis.exists_isBasis_inter_eq_of_superset
Set.instReflSubset
isBasis_ground_iff
dual_dual
IsBase.inter_isBasis_iff_compl_inter_isBasis_dual
IsBase.encard_eq_eRank
IsBase.compl_isBase_of_dual
IsBasis.eRk_eq_encard
Set.encard_union_eq
eRk_dual_add_eRank' πŸ“–mathematicalβ€”ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
dual
eRank
Set
Set.instSDiff
E
Set.encard
Set.instInter
β€”Set.diff_inter_self_eq_diff
eRk_dual_add_eRank
dual_ground
eRk_inter_ground
eRk_empty πŸ“–mathematicalβ€”eRk
Set
Set.instEmptyCollection
ENat
instZeroENat
β€”IsBasis.encard_eq_eRk
Indep.isBasis_self
empty_indep
Set.encard_empty
eRk_eq_eRank πŸ“–mathematicalSet
Set.instHasSubset
E
eRk
eRank
β€”eRk_inter_ground
Set.inter_eq_self_of_subset_right
eRank_def
eRk_eq_eRk_diff_eRk_le_zero πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
instZeroENat
Set
Set.instSDiff
β€”eRk_eq_eRk_union_eRk_le_zero
Set.diff_union_self
eRk_eq_eRk_of_subset_of_le πŸ“–β€”Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
β€”β€”LE.le.antisymm
eRk_mono
eRk_eq_eRk_union_eRk_le_zero πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
instZeroENat
Set
Set.instUnion
β€”LE.le.antisymm
LE.le.trans_eq
LE.le.trans
eRk_union_le_eRk_add_eRk
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
add_zero
eRk_mono
Set.subset_union_left
eRk_eq_of_eRk_insert_le_forall πŸ“–β€”Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.instInsert
β€”β€”eRk_closure_eq
IsRkFinite.closure_eq_closure_of_subset_of_forall_insert
eRk_eq_top_iff
IsRkFinite.subset
eRk_eq_one_iff πŸ“–mathematicalSet
Set.instHasSubset
E
eRk
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.instMembership
IsNonloop
closure
Set.instSingletonSet
β€”exists_isBasis
IsBasis.eRk_eq_encard
Set.encard_eq_one
Set.singleton_subset_iff
IsBasis.subset
indep_singleton
IsBasis.indep
IsBasis.subset_closure
IsNonloop.eRk_eq
LE.le.antisymm
LE.le.trans
eRk_mono
Eq.le
eRk_closure_eq
eRk_eq_top_iff πŸ“–mathematicalβ€”eRk
Top.top
ENat
instTopENat
IsRkFinite
β€”exists_isBasis'
IsBasis'.eRk_eq_encard
Set.encard_eq_top_iff
IsBasis'.finite_iff_isRkFinite
Set.Infinite.eq_1
eRk_eq_zero_iff πŸ“–mathematicalSet
Set.instHasSubset
E
eRk
ENat
instZeroENat
loops
β€”eRk_eq_zero_iff'
Set.inter_eq_self_of_subset_left
eRk_eq_zero_iff' πŸ“–mathematicalβ€”eRk
ENat
instZeroENat
Set
Set.instHasSubset
Set.instInter
E
loops
β€”exists_isBasis
eRk_inter_ground
IsBasis.encard_eq_eRk
Set.encard_eq_zero
Set.eq_empty_iff_forall_notMem
IsNonloop.not_isLoop
Indep.isNonloop_of_mem
IsBasis.indep
IsBasis.subset
eRk_freeOn πŸ“–mathematicalSet
Set.instHasSubset
eRk
freeOn
Set.encard
β€”exists_isBasis
IsBasis.eRk_eq_encard
Indep.eq_of_isBasis
freeOn_indep
eRk_ground πŸ“–mathematicalβ€”eRk
E
eRank
β€”eRank_def
eRk_ground_inter πŸ“–mathematicalβ€”eRk
Set
Set.instInter
E
β€”Set.inter_comm
eRk_inter_ground
eRk_ground_union πŸ“–mathematicalβ€”eRk
Set
Set.instUnion
E
eRank
β€”Set.union_comm
eRk_union_ground
eRk_insert_closure_eq πŸ“–mathematicalβ€”eRk
Set
Set.instInsert
closure
β€”Set.union_singleton
eRk_union_closure_left_eq
eRk_insert_eq_add_one πŸ“–mathematicalSet
Set.instMembership
Set.instSDiff
E
closure
eRk
Set.instInsert
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”exists_isBasis'
eRk_closure_eq
closure_insert_congr_right
IsBasis'.closure_eq_closure
IsBasis'.eRk_eq_encard
Indep.eRk_eq_encard
Indep.mem_closure_iff'
IsBasis'.indep
Set.mem_diff
Set.encard_insert_of_notMem
eRk_insert_inter_add_eRk_insert_union_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
Set
Set.instInsert
Set.instInter
Set.instUnion
β€”Set.insert_inter_distrib
Set.insert_union_distrib
eRk_submod
eRk_insert_le_add_one πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instInsert
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”LE.le.trans
eRk_union_le_eRk_add_eRk
Set.union_singleton
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Set.encard_singleton
eRk_le_encard
eRk_insert_of_notMem_ground πŸ“–mathematicalSet
Set.instMembership
E
eRk
Set.instInsert
β€”eRk_inter_ground
Set.insert_inter_of_notMem
eRk_inter_add_eRk_union_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
Set
Set.instInter
Set.instUnion
β€”exists_isBasis'
Indep.subset_isBasis'_of_subset
IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
Set.inter_subset_left
Set.inter_subset_right
IsBasis'.eRk_eq_eRk_union
Set.union_comm
IsBasis'.encard_eq_eRk
Set.encard_union_add_encard_inter
add_comm
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
eRk_le_encard
Set.encard_mono
Set.subset_inter
eRk_inter_ground πŸ“–mathematicalβ€”eRk
Set
Set.instInter
E
β€”exists_isBasis'
IsBasis'.eRk_eq_eRk
IsBasis.eRk_eq_eRk
IsBasis'.isBasis_inter_ground
eRk_le_eRank πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
eRank
β€”eRank_def
eRk_inter_ground
eRk_mono
Set.inter_subset_right
eRk_le_eRk_add_eRk_diff πŸ“–mathematicalSet
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.instSDiff
β€”Set.union_diff_cancel
eRk_union_le_eRk_add_eRk
eRk_le_eRk_inter_add_eRk_diff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set
Set.instInter
Set.instSDiff
β€”Set.inter_union_diff
eRk_union_le_eRk_add_eRk
eRk_le_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.encard
β€”exists_isBasis'
IsBasis'.eRk_eq_encard
Set.encard_mono
IsBasis'.subset
eRk_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.encard
β€”Eq.trans_le
Indep.eRk_eq_encard
LE.le.trans
eRk_mono
exists_isBasis'
IsBasis'.encard_eq_eRk
IsBasis'.subset
IsBasis'.indep
eRk_le_one_iff πŸ“–mathematicalSet
Set.instHasSubset
E
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.instMembership
closure
Set.instSingletonSet
β€”exists_isBasis
Set.encard_le_one_iff_eq
IsBasis.eRk_eq_encard
ground_nonempty
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis.subset_closure
closure_subset_closure
Set.empty_subset
Indep.subset_ground
IsBasis.indep
LE.le.trans
eRk_mono
eRk_closure_eq
Set.encard_singleton
eRk_le_encard
eRk_loops πŸ“–mathematicalβ€”eRk
loops
ENat
instZeroENat
β€”β€”
eRk_loopyOn πŸ“–mathematicalβ€”eRk
loopyOn
ENat
instZeroENat
β€”exists_isBasis'
IsBasis'.eRk_eq_encard
loopyOn_indep_iff
IsBasis'.indep
Set.encard_empty
eRk_lt_encard_iff_dep πŸ“–mathematicalSet
Set.instHasSubset
E
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.encard
Dep
β€”not_indep_iff
LT.lt.ne
Indep.eRk_eq_encard
Dep.eRk_lt_encard
eRk_lt_encard_iff_dep_of_finite πŸ“–mathematicalSet
Set.instHasSubset
E
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.encard
Dep
β€”not_indep_iff
indep_iff_eRk_eq_encard_of_finite
LT.lt.ne
eRk_lt_encard_of_dep_of_finite
eRk_lt_encard_of_dep_of_finite πŸ“–mathematicalDepENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set.encard
β€”lt_of_le_of_ne
eRk_le_encard
Indep.not_dep
indep_iff_eRk_eq_encard_of_finite
eRk_lt_top_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Top.top
instTopENat
IsRkFinite
β€”lt_top_iff_ne_top
eRk_ne_top_iff
eRk_map πŸ“–mathematicalSet.InjOn
E
Set
Set.instHasSubset
eRk
map
Set.image
β€”exists_isBasis
IsBasis.eRk_eq_encard
IsBasis.map
Set.InjOn.encard_image
Set.InjOn.mono
Indep.subset_ground
IsBasis.indep
eRk_mono πŸ“–mathematicalβ€”Monotone
Set
ENat
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
β€”exists_isBasis'
Indep.subset_isBasis'_of_subset
IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
IsBasis'.eRk_eq_encard
Set.encard_mono
eRk_ne_top_iff πŸ“–mathematicalβ€”IsRkFiniteβ€”β€”
eRk_singleton_eq πŸ“–mathematicalSet
Set.instMembership
E
eRk
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”IsNonloop.eRk_eq
isNonloop_of_loopless
eRk_singleton_eq_one_iff πŸ“–mathematicalβ€”eRk
Set
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
IsNonloop
β€”indep_singleton
indep_iff_eRk_eq_encard_of_finite
Set.encard_singleton
IsNonloop.eRk_eq
eRk_singleton_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instSingletonSet
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.trans_eq
eRk_le_encard
Set.encard_singleton
eRk_submod πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRk
Set
Set.instInter
Set.instUnion
β€”eRk_inter_add_eRk_union_le
eRk_union_closure_left_eq πŸ“–mathematicalβ€”eRk
Set
Set.instUnion
closure
β€”eRk_closure_eq
closure_union_closure_left_eq
eRk_union_closure_right_eq πŸ“–mathematicalβ€”eRk
Set
Set.instUnion
closure
β€”eRk_closure_eq
closure_union_closure_right_eq
eRk_union_ground πŸ“–mathematicalβ€”eRk
Set
Set.instUnion
E
eRank
β€”eRk_inter_ground
Set.inter_eq_self_of_subset_right
Set.subset_union_right
eRank_def
eRk_union_le_eRk_add_eRk πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.trans
le_add_self
eRk_submod
eRk_union_le_eRk_add_encard πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.encard
β€”LE.le.trans
eRk_union_le_eRk_add_eRk
le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
eRk_le_encard
eRk_union_le_encard_add_eRk πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instUnion
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Set.encard
β€”LE.le.trans
eRk_union_le_eRk_add_eRk
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
eRk_le_encard
le_refl
eRk_univ_eq πŸ“–mathematicalβ€”eRk
Set.univ
eRank
β€”eRk_inter_ground
Set.univ_inter
eRank_def
eq_eRk_iff πŸ“–mathematicalSet
Set.instHasSubset
E
eRk
IsBasis
Set.encard
β€”exists_isBasis
IsBasis.encard_eq_eRk
eq_loopyOn_iff_eRank πŸ“–mathematicalβ€”loopyOn
eRank
ENat
instZeroENat
E
β€”eRank_loopyOn
eRank_eq_zero_iff
exists_eRk_insert_eq_add_one_of_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instMembership
Set.instSDiff
Set.instInsert
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Mathlib.Tactic.Contrapose.contrapose₃
eRk_inter_ground
eRk_closure_eq
eRk_mono
Set.not_subset
mem_closure_of_mem'
eRk_insert_eq_add_one
exists_of_eRank_eq_zero πŸ“–mathematicaleRank
ENat
instZeroENat
loopyOnβ€”β€”
indep_iff_eRk_eq_encard πŸ“–mathematicalβ€”Indep
eRk
Set.encard
β€”Indep.eRk_eq_encard
Set.finite_or_infinite
indep_iff_eRk_eq_encard_of_finite
LT.lt.ne
IsRkFinite.eRk_lt_top
isRkFinite_set
Set.Infinite.encard_eq
indep_iff_eRk_eq_encard_of_finite πŸ“–mathematicalβ€”Indep
eRk
Set.encard
β€”Indep.eRk_eq_encard
exists_isBasis'
Set.Finite.eq_of_subset_of_encard_le'
IsBasis'.subset
IsBasis'.eRk_eq_encard
le_refl
IsBasis'.indep
isBasis'_iff_indep_encard_eq_of_finite πŸ“–mathematicalβ€”IsBasis'
Set
Set.instHasSubset
Indep
Set.encard
eRk
β€”IsBasis'.subset
IsBasis'.indep
IsBasis'.eRk_eq_encard
Indep.subset_isBasis'_of_subset
Set.Finite.eq_of_subset_of_encard_le
Eq.le
IsBasis'.encard_eq_eRk
isBasis_iff_indep_encard_eq_of_finite πŸ“–mathematicalSet
Set.instHasSubset
E
IsBasis
Indep
Set.encard
eRk
β€”isBasis'_iff_isBasis
isBasis'_iff_indep_encard_eq_of_finite
le_eRk_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRk
Set
Set.instHasSubset
Indep
Set.encard
β€”exists_isBasis'
Set.exists_subset_encard_eq
IsBasis'.encard_eq_eRk
HasSubset.Subset.trans
Set.instIsTransSubset
IsBasis'.subset
Indep.subset
IsBasis'.indep
Indep.eRk_eq_encard
eRk_mono
one_le_eRank πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
eRank
β€”exists_isBase
IsBase.encard_eq_eRank
Set.one_le_encard_iff_nonempty
IsBase.nonempty
restrict_eRk_eq πŸ“–mathematicalSet
Set.instHasSubset
eRk
restrict
β€”restrict_eRk_eq'
Set.inter_eq_self_of_subset_left
restrict_eRk_eq' πŸ“–mathematicalβ€”eRk
restrict
Set
Set.instInter
β€”exists_isBasis'
IsBasis'.eRk_eq_encard
eRk_inter_ground
IsBasis.eRk_eq_encard
restrict_ground_eq
isBasis_restrict_iff'
isBasis'_iff_isBasis_inter_ground
spanning_iff_eRk_le πŸ“–mathematicalSet
Set.instHasSubset
E
Spanning
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRank
eRk
β€”spanning_iff_eRk_le'
spanning_iff_eRk_le' πŸ“–mathematicalβ€”Spanning
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
eRank
eRk
Set
Set.instHasSubset
E
β€”Eq.le
Spanning.eRk_eq
Spanning.subset_ground
exists_isBasis
IsBase.spanning_of_superset
Indep.isBase_of_eRk_ge
IsBasis.indep
Indep.finite
LE.le.trans
IsBasis.eRk_eq_eRk
IsBasis.subset

Matroid.Dep

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_lt_encard πŸ“–mathematicalMatroid.DepENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Set.encard
β€”LE.le.lt_of_ne
Matroid.eRk_le_encard
Matroid.indep_iff_eRk_eq_encard
not_indep

Matroid.Indep

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq_encard πŸ“–mathematicalMatroid.IndepMatroid.eRk
Set.encard
β€”Matroid.eq_eRk_iff
subset_ground
isBasis_self
encard_le_eRank πŸ“–mathematicalMatroid.IndepENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Matroid.eRank
β€”eRk_eq_encard
Matroid.eRank_def
Matroid.eRk_mono
subset_ground
encard_le_eRk_of_subset πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Matroid.eRk
β€”Matroid.eRk_mono
eRk_eq_encard
exists_insert_of_encard_lt πŸ“–mathematicalMatroid.Indep
ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Set
Set.instMembership
Set.instSDiff
Set.instInsert
β€”augment
isBase_of_eRk_ge πŸ“–mathematicalMatroid.Indep
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRank
Matroid.eRk
Matroid.IsBaseβ€”isBasis_of_eRk_ge
subset_ground
Eq.trans_le
Matroid.eRk_ground
Set.instReflSubset
isBasis'_of_eRk_ge πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Matroid.IsBasis'β€”Matroid.isBasis'_iff_indep_encard_eq_of_finite
LE.le.antisymm
Matroid.eRk_mono
eRk_eq_encard
isBasis_of_eRk_ge πŸ“–mathematicalMatroid.Indep
Set
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Matroid.E
Matroid.IsBasisβ€”Matroid.IsBasis'.isBasis
isBasis'_of_eRk_ge

Matroid.IsBase

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq_eRank πŸ“–mathematicalMatroid.IsBaseMatroid.eRk
Matroid.eRank
β€”Matroid.Indep.eRk_eq_encard
indep
Matroid.eRank_def
Matroid.IsBasis.encard_eq_eRk
isBasis_ground
encard_compl_eq πŸ“–mathematicalMatroid.IsBaseSet.encard
Set
Set.instSDiff
Matroid.E
Matroid.eRank
Matroid.dual
β€”encard_eq_eRank
compl_isBase_dual
encard_eq_eRank πŸ“–mathematicalMatroid.IsBaseSet.encard
Matroid.eRank
β€”encard_eq_encard_of_isBase
ciSup_const
Matroid.instNonemptySubtypeSetIsBase

Matroid.IsBasis

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq_eRk πŸ“–mathematicalMatroid.IsBasisMatroid.eRkβ€”encard_eq_eRk
Matroid.Indep.eRk_eq_encard
indep
eRk_eq_eRk_insert πŸ“–mathematicalMatroid.IsBasisMatroid.eRk
Set
Set.instInsert
β€”Set.union_singleton
eRk_eq_eRk_union
eRk_eq_eRk_union πŸ“–mathematicalMatroid.IsBasisMatroid.eRk
Set
Set.instUnion
β€”Matroid.IsBasis'.eRk_eq_eRk_union
isBasis'
eRk_eq_encard πŸ“–mathematicalMatroid.IsBasisMatroid.eRk
Set.encard
β€”eRk_eq_eRk
Matroid.Indep.eRk_eq_encard
indep
encard_eq_eRk πŸ“–mathematicalMatroid.IsBasisSet.encard
Matroid.eRk
β€”Matroid.IsBasis'.encard_eq_eRk
isBasis'

Matroid.IsBasis'

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq_eRk πŸ“–mathematicalMatroid.IsBasis'Matroid.eRkβ€”encard_eq_eRk
Matroid.Indep.eRk_eq_encard
indep
eRk_eq_eRk_insert πŸ“–mathematicalMatroid.IsBasis'Matroid.eRk
Set
Set.instInsert
β€”Set.union_singleton
eRk_eq_eRk_union
eRk_eq_eRk_union πŸ“–mathematicalMatroid.IsBasis'Matroid.eRk
Set
Set.instUnion
β€”Matroid.eRk_union_closure_left_eq
closure_eq_closure
eRk_eq_encard πŸ“–mathematicalMatroid.IsBasis'Matroid.eRk
Set.encard
β€”eRk_eq_eRk
Matroid.Indep.eRk_eq_encard
indep
encard_eq_eRk πŸ“–mathematicalMatroid.IsBasis'Set.encard
Matroid.eRk
β€”Matroid.IsBase.encard_eq_eRank
isBase_restrict

Matroid.IsCircuit

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_add_one_eq πŸ“–mathematicalMatroid.IsCircuitENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Matroid.eRk
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Set.encard
β€”Matroid.exists_isBasis
subset_ground
isBasis_iff_insert_eq
Matroid.IsBasis.eRk_eq_encard
Set.encard_insert_of_notMem

Matroid.IsLoop

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq πŸ“–mathematicalMatroid.IsLoopMatroid.eRk
Set
Set.instSingletonSet
ENat
instZeroENat
β€”Matroid.eRk_closure_eq
closure
Matroid.loops.eq_1
Matroid.eRk_empty

Matroid.IsNonloop

Theorems

NameKindAssumesProvesValidatesDepends On
eRk_eq πŸ“–mathematicalMatroid.IsNonloopMatroid.eRk
Set
Set.instSingletonSet
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Matroid.IsBasis.encard_eq_eRk
Matroid.Indep.isBasis_self
indep
Set.encard_singleton

Matroid.IsRkFinite

Theorems

NameKindAssumesProvesValidatesDepends On
closure_eq_closure_of_subset_of_eRk_ge_eRk πŸ“–mathematicalSet
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Matroid.closureβ€”Matroid.exists_isBasis'
Matroid.Indep.subset_isBasis'_of_subset
Matroid.IsBasis'.indep
HasSubset.Subset.trans
Set.instIsTransSubset
Matroid.IsBasis'.subset
Matroid.closure_inter_ground
Matroid.IsBasis.closure_eq_closure
Matroid.IsBasis'.isBasis_inter_ground
Set.Finite.eq_of_subset_of_encard_le
Matroid.Indep.finite_of_subset_isRkFinite
Matroid.IsBasis'.eRk_eq_encard
closure_eq_closure_of_subset_of_forall_insert πŸ“–mathematicalSet
Set.instHasSubset
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Set.instInsert
Matroid.closureβ€”closure_eq_closure_of_subset_of_eRk_ge_eRk
not_lt
Matroid.exists_eRk_insert_eq_add_one_of_lt
ENat.add_one_le_iff
LT.lt.ne
eRk_lt_top
eRk_lt_top πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Matroid.eRk
Top.top
instTopENat
β€”Matroid.eRk_lt_top_iff
indep_of_encard_le_eRk πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Matroid.eRk
Matroid.Indepβ€”Matroid.indep_iff_eRk_eq_encard_of_finite
LE.le.trans_lt
eRk_lt_top
LE.le.antisymm
Matroid.eRk_le_encard
isBasis_of_subset_closure_of_subset_of_encard_le πŸ“–mathematicalSet
Set.instHasSubset
Matroid.closure
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
Set.encard
Matroid.eRk
Matroid.IsBasisβ€”Matroid.exists_isBasis
HasSubset.Subset.trans
Set.instIsTransSubset
Matroid.IsBasis.subset
Set.inter_subset_left
Matroid.closure_inter_ground
Matroid.closure_subset_closure_of_subset_closure
Matroid.IsBasis.subset_closure
Matroid.Indep.isBasis_of_subset_of_subset_closure
Matroid.IsBasis.indep
Set.Finite.eq_of_subset_of_encard_le
finite_of_isBasis
Matroid.IsBasis.encard_eq_eRk

Matroid.Spanning

Theorems

NameKindAssumesProvesValidatesDepends On
eRank_restrict πŸ“–mathematicalMatroid.SpanningMatroid.eRank
Matroid.restrict
β€”Matroid.eRank_def
Matroid.restrict_ground_eq
Matroid.restrict_eRk_eq
Eq.subset
Set.instReflSubset
eRk_eq
eRk_eq πŸ“–mathematicalMatroid.SpanningMatroid.eRk
Matroid.eRank
β€”Matroid.exists_isBasis
subset_ground
LE.le.antisymm
Matroid.eRk_le_eRank
Matroid.IsBasis.encard_eq_eRk
Matroid.IsBase.encard_eq_eRank
Matroid.IsBasis.isBase_of_spanning
le_refl

---

← Back to Index