ENat
π Source: Mathlib/Combinatorics/Matroid/Rank/ENat.lean
Statistics
Matroid
Definitions
Theorems
Matroid.Dep
Theorems
Matroid.Indep
Theorems
Matroid.IsBase
Theorems
Matroid.IsBasis
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eRk_eq_eRk π | mathematical | Matroid.IsBasis | Matroid.eRk | β | encard_eq_eRkMatroid.Indep.eRk_eq_encardindep |
eRk_eq_eRk_insert π | mathematical | Matroid.IsBasis | Matroid.eRkSetSet.instInsert | β | Set.union_singletoneRk_eq_eRk_union |
eRk_eq_eRk_union π | mathematical | Matroid.IsBasis | Matroid.eRkSetSet.instUnion | β | Matroid.IsBasis'.eRk_eq_eRk_unionisBasis' |
eRk_eq_encard π | mathematical | Matroid.IsBasis | Matroid.eRkSet.encard | β | eRk_eq_eRkMatroid.Indep.eRk_eq_encardindep |
encard_eq_eRk π | mathematical | Matroid.IsBasis | Set.encardMatroid.eRk | β | Matroid.IsBasis'.encard_eq_eRkisBasis' |
Matroid.IsBasis'
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eRk_eq_eRk π | mathematical | Matroid.IsBasis' | Matroid.eRk | β | encard_eq_eRkMatroid.Indep.eRk_eq_encardindep |
eRk_eq_eRk_insert π | mathematical | Matroid.IsBasis' | Matroid.eRkSetSet.instInsert | β | Set.union_singletoneRk_eq_eRk_union |
eRk_eq_eRk_union π | mathematical | Matroid.IsBasis' | Matroid.eRkSetSet.instUnion | β | Matroid.eRk_union_closure_left_eqclosure_eq_closure |
eRk_eq_encard π | mathematical | Matroid.IsBasis' | Matroid.eRkSet.encard | β | eRk_eq_eRkMatroid.Indep.eRk_eq_encardindep |
encard_eq_eRk π | mathematical | Matroid.IsBasis' | Set.encardMatroid.eRk | β | Matroid.IsBase.encard_eq_eRankisBase_restrict |
Matroid.IsCircuit
Theorems
Matroid.IsLoop
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
eRk_eq π | mathematical | Matroid.IsLoop | Matroid.eRkSetSet.instSingletonSetENatinstZeroENat | β | Matroid.eRk_closure_eqclosureMatroid.loops.eq_1Matroid.eRk_empty |
Matroid.IsNonloop
Theorems
Matroid.IsRkFinite
Theorems
Matroid.Spanning
Theorems
---