Documentation Verification Report

Path

πŸ“ Source: Mathlib/Combinatorics/Quiver/Path.lean

Statistics

MetricCount
DefinitionsmapPath, toPath, Path, BoundedPaths, comp, decidableEqBddPathsOfDecidableEq, decidableEqBddPathsZero, decidableEqBoundedPaths, instDecidableEq, instInhabited, length, toList
12
TheoremsmapPath_comp, mapPath_comp_apply, mapPath_cons, mapPath_id, mapPath_nil, mapPath_toPath, comp_assoc, comp_cons, comp_inj, comp_inj', comp_inj_left, comp_inj_right, comp_injective_left, comp_injective_right, comp_nil, comp_toPath_eq_cons, cons_ne_nil, eq_nil_of_length_zero, eq_of_length_zero, eq_toPath_comp_of_length_eq_succ, heq_of_cons_eq_cons, hom_heq_of_cons_eq_cons, instSubsingletonBddPaths, isChain_cons_toList_nonempty, isChain_toList_nonempty, length_comp, length_cons, length_ne_zero_iff_eq_comp, length_ne_zero_iff_eq_cons, length_nil, length_toPath, nil_comp, nil_ne_cons, obj_eq_of_cons_eq_cons, toList_chain_nonempty, toList_comp, toList_inj, toList_injective
38
Total50

Prefunctor

Definitions

NameCategoryTheorems
mapPath πŸ“–CompOp
13 mathmath: CategoryTheory.Cat.freeMap_map, mapPath_nil, mapPath_id, CategoryTheory.Localization.Construction.lift_map, mapPath_toPath, CategoryTheory.Quiv.lift_map, CategoryTheory.Localization.Construction.WhiskeringLeftEquivalence.inverse_obj_map, mapPath_comp, pathStar_apply, CategoryTheory.Localization.Construction.liftToPathCategory_map, mapPath_cons, mapPath_comp_apply, CategoryTheory.Prefunctor.mapPath_comp'

Theorems

NameKindAssumesProvesValidatesDepends On
mapPath_comp πŸ“–mathematicalβ€”mapPath
Quiver.Path.comp
obj
β€”β€”
mapPath_comp_apply πŸ“–mathematicalβ€”mapPath
comp
obj
β€”β€”
mapPath_cons πŸ“–mathematicalβ€”mapPath
Quiver.Path.cons
obj
map
β€”β€”
mapPath_id πŸ“–mathematicalβ€”mapPath
id
β€”β€”
mapPath_nil πŸ“–mathematicalβ€”mapPath
Quiver.Path.nil
obj
β€”β€”
mapPath_toPath πŸ“–mathematicalβ€”mapPath
Quiver.Hom.toPath
obj
map
β€”β€”

Quiver

Definitions

NameCategoryTheorems
Path πŸ“–CompData
23 mathmath: SingleObj.pathEquivList_nil, Path.heq_of_cons_eq_cons, IsFreeGroupoid.path_nonempty_of_hom, StronglyConnectedComponent.eq, IsStronglyConnected.nonempty_path, exists_path_of_stronglyConnectedComponent_eq, WeaklyConnectedComponent.eq, Path.cast_eq_cast, Path.eq_cast_iff_heq, Matrix.pow_apply_pos_iff_nonempty_path, isStronglyConnected_iff, Path.comp_injective_left, SingleObj.pathEquivList_symm_cons, CategoryTheory.FreeBicategory.preinclusion_mapβ‚‚, Path.comp_injective_right, Path.cast_heq, RootedConnected.nonempty_path, SingleObj.pathEquivList_symm_nil, Path.cast_eq_iff_heq, SingleObj.pathEquivList_cons, stronglyConnectedComponent_singleton_iff, StronglyConnectedComponent.mk_eq_mk, Path.toList_injective

Quiver.Hom

Definitions

NameCategoryTheorems
toPath πŸ“–CompOp
16 mathmath: Quiver.Path.length_ne_zero_iff_eq_comp, Quiver.Path.exists_mem_notMem_hom_path_path_of_notMem_mem, Quiver.Path.exists_notMem_mem_hom_path_path_of_notMem_mem, SSet.OneTruncationβ‚‚.HoRelβ‚‚.mk, Quiver.Path.vertices_toPath, Quiver.Path.vertices_toPath_tail, CategoryTheory.Paths.of_map, Prefunctor.mapPath_toPath, CategoryTheory.Cat.FreeRefl.quotientFunctor_map_id, Quiver.Path.eq_toPath_comp_of_length_eq_succ, CategoryTheory.composePath_toPath, CategoryTheory.Paths.lift_toPath, Quiver.Path.length_toPath, Quiver.Path.reverse_toPath, CategoryTheory.toQuotientPaths_map, Quiver.Path.comp_toPath_eq_cons

Quiver.Path

Definitions

NameCategoryTheorems
BoundedPaths πŸ“–CompOp
1 mathmath: instSubsingletonBddPaths
comp πŸ“–CompOp
32 mathmath: length_ne_zero_iff_eq_comp, exists_mem_notMem_hom_path_path_of_notMem_mem, exists_notMem_mem_hom_path_path_of_notMem_mem, exists_eq_comp_and_notMem_tail_of_mem_vertices, comp_inj_left, toList_comp, comp_eq_nil_iff, comp_injective_left, vertices_comp, comp_inj', CategoryTheory.composePath_comp, nil_comp, reverse_comp, comp_injective_right, eq_toPath_comp_of_length_eq_succ, comp_inj, comp_inj_right, addWeightOfEPs_comp, comp_assoc, weight_comp, Prefunctor.mapPath_comp, exists_eq_comp_of_mem_vertices, length_comp, comp_nil, weightOfEPs_comp, exists_eq_comp_and_length_eq_of_lt_length, addWeight_comp, CategoryTheory.FreeBicategory.normalizeAux_nil_comp, comp_toPath_eq_cons, exists_eq_comp_of_le_length, comp_cons, CategoryTheory.Prefunctor.mapPath_comp'
decidableEqBddPathsOfDecidableEq πŸ“–CompOpβ€”
decidableEqBddPathsZero πŸ“–CompOpβ€”
decidableEqBoundedPaths πŸ“–CompOpβ€”
instDecidableEq πŸ“–CompOpβ€”
instInhabited πŸ“–CompOpβ€”
length πŸ“–CompOp
17 mathmath: length_ne_zero_iff_eq_comp, length_cons, length_nil, nil_of_comp_eq_nil_right, comp_eq_nil_iff, Matrix.pow_apply_pos_iff_nonempty_path, Quiver.IsSStronglyConnected.exists_pos_path, Quiver.shortest_path_spec, nil_of_comp_eq_nil_left, vertices_length, length_eq_zero_iff, length_comp, Quiver.IsSStronglyConnected.exists_pos_cycle, exists_eq_comp_and_length_eq_of_lt_length, Quiver.StronglyConnectedComponent.IsSStronglyConnected.pos_cycle, length_toPath, Quiver.isSStronglyConnected_iff
toList πŸ“–CompOp
6 mathmath: toList_comp, toList_inj, toList_chain_nonempty, isChain_toList_nonempty, isChain_cons_toList_nonempty, toList_injective

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc πŸ“–mathematicalβ€”compβ€”comp_cons
comp_cons πŸ“–mathematicalβ€”comp
cons
β€”β€”
comp_inj πŸ“–mathematicallengthcompβ€”HEq.eq
comp_inj' πŸ“–mathematicallengthcompβ€”length_comp
comp_inj_left πŸ“–mathematicalβ€”compβ€”comp_injective_left
comp_inj_right πŸ“–mathematicalβ€”compβ€”comp_injective_right
comp_injective_left πŸ“–mathematicalβ€”Quiver.Path
comp
β€”β€”
comp_injective_right πŸ“–mathematicalβ€”Quiver.Path
comp
β€”comp_inj'
comp_nil πŸ“–mathematicalβ€”comp
nil
β€”β€”
comp_toPath_eq_cons πŸ“–mathematicalβ€”comp
Quiver.Hom.toPath
cons
β€”β€”
cons_ne_nil πŸ“–β€”β€”β€”β€”β€”
eq_nil_of_length_zero πŸ“–mathematicallengthnilβ€”β€”
eq_of_length_zero πŸ“–β€”lengthβ€”β€”β€”
eq_toPath_comp_of_length_eq_succ πŸ“–mathematicallengthcomp
Quiver.Hom.toPath
β€”eq_nil_of_length_zero
eq_of_length_zero
length_cons
heq_of_cons_eq_cons πŸ“–mathematicalconsQuiver.Pathβ€”β€”
hom_heq_of_cons_eq_cons πŸ“–mathematicalconsQuiver.Homβ€”β€”
instSubsingletonBddPaths πŸ“–mathematicalβ€”BoundedPathsβ€”β€”
isChain_cons_toList_nonempty πŸ“–mathematicalβ€”Quiver.Hom
toList
β€”β€”
isChain_toList_nonempty πŸ“–mathematicalβ€”Quiver.Hom
toList
β€”β€”
length_comp πŸ“–mathematicalβ€”length
comp
β€”β€”
length_cons πŸ“–mathematicalβ€”length
cons
β€”β€”
length_ne_zero_iff_eq_comp πŸ“–mathematicalβ€”comp
Quiver.Hom.toPath
length
β€”eq_toPath_comp_of_length_eq_succ
length_ne_zero_iff_eq_cons πŸ“–mathematicalβ€”consβ€”β€”
length_nil πŸ“–mathematicalβ€”length
nil
β€”β€”
length_toPath πŸ“–mathematicalβ€”length
Quiver.Hom.toPath
β€”β€”
nil_comp πŸ“–mathematicalβ€”comp
nil
β€”comp_cons
nil_ne_cons πŸ“–β€”β€”β€”β€”β€”
obj_eq_of_cons_eq_cons πŸ“–β€”consβ€”β€”β€”
toList_chain_nonempty πŸ“–mathematicalβ€”Quiver.Hom
toList
β€”isChain_cons_toList_nonempty
toList_comp πŸ“–mathematicalβ€”toList
comp
β€”β€”
toList_inj πŸ“–mathematicalQuiver.HomtoListβ€”toList_injective
toList_injective πŸ“–mathematicalQuiver.HomQuiver.Path
toList
β€”β€”

---

← Back to Index