Documentation Verification Report

ReflQuiver

šŸ“ Source: Mathlib/Combinatorics/Quiver/ReflQuiver.lean

Statistics

MetricCount
DefinitionstoReflPrefunctor, ReflPrefunctor, comp, id, instInhabited, toPrefunctor, Ā«term_ā‹™rq_Ā», Ā«term_ℤrq_Ā», Ā«termšŸ­rqĀ», ReflQuiver, discreteReflQuiver, id, opposite, toQuiver, catToReflQuiver, Ā«termšŸ™rqĀ»
16
Theoremsmap_comp, toReflPrefunctor_toPrefunctor, comp_assoc, comp_id, comp_map, comp_obj, congr_hom, congr_map, congr_obj, ext, ext', id_comp, id_map, id_obj, map_id, mk_map, mk_obj, homOfEq_id, id_eq_id
19
Total35

CategoryTheory

Definitions

NameCategoryTheorems
ReflPrefunctor šŸ“–CompData
4 mathmath: ReflQuiv.adj.homEquiv_symm_apply, ReflQuiv.adj.homEquiv_naturality_left_symm, ReflQuiv.adj.homEquiv_apply, ReflQuiv.adj.homEquiv_naturality_right
ReflQuiver šŸ“–CompData
18 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, ReflQuiv.adj_homEquiv, Cat.freeRefl_map, ReflQuiv.id_map, ReflQuiv.comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, ReflQuiv.comp_eq_comp, ReflQuiv.adj.unit.map_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, ReflQuiv.forgetToQuiv_obj, ReflQuiv.comp_obj, ReflQuiv.of_val, ReflQuiv.forgetToQuiv_map, ReflQuiv.id_eq_id, ReflQuiv.id_obj, Cat.freeRefl_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map
catToReflQuiver šŸ“–CompOp
23 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, ReflQuiv.adj.homEquiv_symm_apply, SSet.OneTruncationā‚‚.nerveHomEquiv_id, Cat.FreeRefl.lift_map, Cat.FreeRefl.lift_spec, Cat.toFreeRefl_obj, SSet.hoFunctor.unitHomEquiv_eq, ReflQuiv.forget_obj, Functor.toReflPrefunctor_toPrefunctor, Cat.toFreeRefl_map, ReflQuiv.adj.homEquiv_naturality_left_symm, ReflQuiv.adj_counit_app, ReflQuiv.adj.homEquiv_apply, ReflQuiv.adj.homEquiv_naturality_right, ReflQuiv.adj.counit.comp_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, Functor.toReflPrefunctor.map_comp, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, Cat.FreeRefl.instSubsingletonHomOfUnique, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, SSet.Truncated.HomotopyCategory.subsingleton_hom, Cat.FreeRefl.lift_obj, ReflQuiver.id_eq_id
Ā«termšŸ™rqĀ» šŸ“–CompOp—

CategoryTheory.Functor

Definitions

NameCategoryTheorems
toReflPrefunctor šŸ“–CompOp
6 mathmath: CategoryTheory.Cat.FreeRefl.lift_spec, CategoryTheory.ReflQuiv.forget_map, toReflPrefunctor_toPrefunctor, CategoryTheory.ReflQuiv.adj.homEquiv_apply, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_right, toReflPrefunctor.map_comp

Theorems

NameKindAssumesProvesValidatesDepends On
toReflPrefunctor_toPrefunctor šŸ“–mathematical—CategoryTheory.ReflPrefunctor.toPrefunctor
CategoryTheory.Bundled.α
CategoryTheory.Category
CategoryTheory.catToReflQuiver
CategoryTheory.Cat.str
toReflPrefunctor
toPrefunctor
——

CategoryTheory.Functor.toReflPrefunctor

Theorems

NameKindAssumesProvesValidatesDepends On
map_comp šŸ“–mathematical—CategoryTheory.Functor.toReflPrefunctor
CategoryTheory.Functor.comp
CategoryTheory.ReflPrefunctor.comp
CategoryTheory.catToReflQuiver
——

CategoryTheory.ReflPrefunctor

Definitions

NameCategoryTheorems
comp šŸ“–CompOp
11 mathmath: comp_assoc, CategoryTheory.Cat.FreeRefl.lift_spec, CategoryTheory.ReflQuiv.comp_eq_comp, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_left_symm, comp_map, CategoryTheory.ReflQuiv.adj.homEquiv_apply, CategoryTheory.ReflQuiv.adj.homEquiv_naturality_right, comp_obj, CategoryTheory.Functor.toReflPrefunctor.map_comp, comp_id, id_comp
id šŸ“–CompOp
6 mathmath: id_map, id_obj, CategoryTheory.ReflQuiv.adj_counit_app, CategoryTheory.ReflQuiv.id_eq_id, comp_id, id_comp
instInhabited šŸ“–CompOp—
toPrefunctor šŸ“–CompOp
29 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, id_map, id_obj, CategoryTheory.Cat.freeReflMap_obj, congr_obj, CategoryTheory.ReflQuiv.id_map, CategoryTheory.Cat.FreeRefl.lift_map, CategoryTheory.ReflQuiv.comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, CategoryTheory.Cat.toFreeRefl_obj, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, congr_hom, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, CategoryTheory.Functor.toReflPrefunctor_toPrefunctor, CategoryTheory.Cat.freeReflMap_naturality, congr_map, CategoryTheory.ReflQuiv.comp_obj, CategoryTheory.Cat.toFreeRefl_map, map_id, comp_map, CategoryTheory.ReflQuiv.forgetToQuiv_map, CategoryTheory.ReflQuiv.id_obj, comp_obj, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map, CategoryTheory.Cat.freeReflMap_map, SSet.OneTruncationā‚‚.map_map, SSet.OneTruncationā‚‚.map_obj, CategoryTheory.Cat.FreeRefl.lift_obj
Ā«term_ā‹™rq_Ā» šŸ“–CompOp—
Ā«term_ℤrq_Ā» šŸ“–CompOp—
Ā«termšŸ­rqĀ» šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
comp_assoc šŸ“–mathematical—comp——
comp_id šŸ“–mathematical—comp
id
——
comp_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
comp
Prefunctor.obj
——
comp_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
comp
——
congr_hom šŸ“–mathematical—Quiver.homOfEq
CategoryTheory.ReflQuiver.toQuiver
Prefunctor.obj
toPrefunctor
Prefunctor.map
congr_obj
—congr_obj
congr_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
——
congr_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
——
ext šŸ“–ā€”Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
Prefunctor.map
Quiver.Hom
——Set.eqOn_univ
ext' šŸ“–ā€”Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
Prefunctor.map
Quiver.homOfEq
——Prefunctor.ext'
id_comp šŸ“–mathematical—comp
id
——
id_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
id
——
id_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
id
——
map_id šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
toPrefunctor
CategoryTheory.ReflQuiver.id
Prefunctor.obj
——
mk_map šŸ“–mathematical—Prefunctor.map
CategoryTheory.ReflQuiver.toQuiver
——
mk_obj šŸ“–mathematical—Prefunctor.obj
CategoryTheory.ReflQuiver.toQuiver
——

CategoryTheory.ReflQuiver

Definitions

NameCategoryTheorems
discreteReflQuiver šŸ“–CompOp—
id šŸ“–CompOp
8 mathmath: SSet.OneTruncationā‚‚.nerveHomEquiv_id, homOfEq_id, CategoryTheory.Cat.FreeRefl.homMk_id, SSet.OneTruncationā‚‚.reflQuiver_id, CategoryTheory.Cat.FreeRefl.quotientFunctor_map_id, CategoryTheory.ReflPrefunctor.map_id, SSet.OneTruncationā‚‚.id_edge, id_eq_id
opposite šŸ“–CompOp—
toQuiver šŸ“–CompOp
44 mathmath: SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_map, CategoryTheory.ReflPrefunctor.id_map, CategoryTheory.ReflPrefunctor.id_obj, SSet.OneTruncationā‚‚.nerveHomEquiv_id, SSet.OneTruncationā‚‚.homOfEq_edge, homOfEq_id, CategoryTheory.Cat.freeReflMap_obj, CategoryTheory.ReflPrefunctor.congr_obj, CategoryTheory.ReflQuiv.id_map, CategoryTheory.Cat.FreeRefl.lift_map, CategoryTheory.ReflQuiv.comp_map, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_obj, CategoryTheory.Cat.toFreeRefl_obj, CategoryTheory.Cat.FreeRefl.instFullPathsQuotientFunctor, SSet.hoFunctor.unitHomEquiv_eq, SSet.OneTruncationā‚‚.HoRelā‚‚.mk, CategoryTheory.ReflQuiv.adj.unit.map_app_eq, CategoryTheory.ReflPrefunctor.congr_hom, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_hom_app_obj, CategoryTheory.Cat.freeReflMap_naturality, CategoryTheory.ReflPrefunctor.congr_map, CategoryTheory.ReflQuiv.forgetToQuiv_obj, CategoryTheory.ReflQuiv.comp_obj, CategoryTheory.Cat.FreeRefl.quotientFunctor_map_id, CategoryTheory.Cat.FreeRefl.quotientFunctor_map_nil, CategoryTheory.Cat.toFreeRefl_map, CategoryTheory.ReflPrefunctor.map_id, CategoryTheory.ReflPrefunctor.comp_map, CategoryTheory.ReflQuiv.id_obj, CategoryTheory.ReflPrefunctor.comp_obj, CategoryTheory.ReflQuiv.adj.counit.comp_app_eq, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_map, SSet.OneTruncationā‚‚.reflQuiver_Hom, SSet.OneTruncationā‚‚.ofNerveā‚‚.natIso_inv_app_obj_map, SSet.OneTruncationā‚‚.nerveHomEquiv_apply, CategoryTheory.Cat.freeReflMap_map, SSet.OneTruncationā‚‚.map_map, SSet.OneTruncationā‚‚.map_obj, SSet.Truncated.HomotopyCategory.BinaryProduct.functor_map, SSet.Truncated.HomotopyCategory.subsingleton_hom, CategoryTheory.ReflPrefunctor.mk_map, CategoryTheory.Cat.FreeRefl.lift_obj, CategoryTheory.Cat.FreeRefl.quotientFunctor_map_cons, CategoryTheory.ReflPrefunctor.mk_obj

Theorems

NameKindAssumesProvesValidatesDepends On
homOfEq_id šŸ“–mathematical—Quiver.homOfEq
toQuiver
id
——
id_eq_id šŸ“–mathematical—id
CategoryTheory.catToReflQuiver
CategoryTheory.CategoryStruct.id
CategoryTheory.Category.toCategoryStruct
——

---

← Back to Index