📁 Source: Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity
exists_of_schnirelmannDensity_eq_zero
le_schnirelmannDensity_iff
schnirelmannDensity_congr
schnirelmannDensity_congr'
schnirelmannDensity_diff_singleton_zero
schnirelmannDensity_empty
schnirelmannDensity_eq_one_iff
schnirelmannDensity_eq_one_iff_of_zero_mem
schnirelmannDensity_eq_zero_of_one_notMem
schnirelmannDensity_finite
schnirelmannDensity_finset
schnirelmannDensity_insert_zero
schnirelmannDensity_le_div
schnirelmannDensity_le_iff_forall
schnirelmannDensity_le_of_le
schnirelmannDensity_le_of_notMem
schnirelmannDensity_le_of_subset
schnirelmannDensity_le_one
schnirelmannDensity_lt_iff
schnirelmannDensity_mul_le_card_filter
schnirelmannDensity_nonneg
schnirelmannDensity_setOf_Odd
schnirelmannDensity_setOf_even
schnirelmannDensity_setOf_mod_eq_one
schnirelmannDensity_setOf_modeq_one
schnirelmannDensity_setOf_prime
schnirelmannDensity_univ
Real
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Finset.card
Finset.filter
Set
Set.instMembership
Finset.Ioc
Nat.instPreorder
Nat.instLocallyFiniteOrder
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
sub_eq_zero_of_eq
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Push.not_and_eq
Real.instLE
le_ciInf_iff
nonempty_gt
Nat.instNoMaxOrder
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
schnirelmannDensity.eq_1
Finset.ext
Set.instSDiff
Set.instSingletonSet
Set.instEmptyCollection
Set.decidableEmptyset
Real.instOne
Set.instHasSubset
Compl.compl
Set.instCompl
le_antisymm_iff
not_imp_not
not_le
LE.le.trans_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Real.instNontrivial
Nat.instCanonicallyOrderedAdd
le_ciInf
one_le_div
Nat.cast_pos
Nat.cast_le
IsStrictOrderedRing.toCharZero
Finset.filter_true_of_mem
LT.lt.ne'
Finset.mem_Ioc
Nat.card_Ioc
le_refl
Set.univ
Set.eq_univ_of_forall
eq_or_ne
Set.subset_univ
LE.le.antisymm
LE.le.trans
Nat.cast_one
inv_one
sub_self
schnirelmannDensity.congr_simp
Set.Finite.coe_toFinset
SetLike.coe
Finset
Finset.instSetLike
Finset.decidableMem'
le_antisymm
zero_add
div_lt_iff₀
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
div_lt_iff₀'
Nat.cast_add_one
LT.lt.trans_le'
Nat.lt_floor_add_one
div_le_div_of_nonneg_right
Nat.mono_cast
Finset.card_le_card
Finset.filter.congr_simp
le_of_lt
zero_lt_one
NeZero.charZero_one
le_rfl
LT.lt.trans_le
le_of_not_ge
Set.instInsert
ciInf_le
Ne.bot_lt
Real.instAdd
le_iff_forall_pos_lt_add
Real.instSub
Real.instInv
inv_zero
sub_zero
one_div
one_sub_div
Nat.cast_pred
Finset.Ioo_insert_right
Finset.filter_insert
Finset.filter_subset
LE.le.trans_eq
Nat.card_Ioo
tsub_zero
Nat.instOrderedSub
Nat.cast_pos'
ciInf_mono
Finset.monotone_filter_right
Set.mem_of_subset_of_mem
one_ne_zero
div_one
Nat.cast_le_one
Finset.card_filter_le
Real.instMul
MulZeroClass.mul_zero
Finset.Ioc_eq_empty_of_le
Finset.filter_empty
le_div_iff₀
lt_of_le_of_ne'
zero_le
Real.iInf_nonneg
setOf
Odd
Nat.instSemiring
Set.decidableSetOf
Nat.instDecidablePredOdd
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Set.ext
Nat.odd_iff
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Nat.cast_two
Even
Nat.instDecidablePredEven
eq_or_lt_of_le
Ne.lt_of_le'
Nat.instZeroLEOneClass
mul_comm
div_eq_mul_inv
LE.le.trans'
Finset.card_image_of_injective
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
Nat.card_Icc
div_le_iff₀
Nat.cast_mul
add_one_mul
Distrib.rightDistribClass
Nat.ModEq
Nat.instDecidableModEq
Nat.Prime
Nat.decidablePrime
Set.decidableUniv
---
← Back to Index