Documentation Verification Report

AhlswedeZhang

πŸ“ Source: Mathlib/Combinatorics/SetFamily/AhlswedeZhang.lean

Statistics

MetricCount
DefinitionsinfSum, supSum, truncatedInf, truncatedSup
4
Theoremsle_infSum, infSum_compls_add_supSum, infSum_eq_one, infSum_union_add_infSum_sups, supSum_of_univ_notMem, supSum_singleton, supSum_union_add_supSum_infs, card_truncatedInf_union_add_card_truncatedInf_sups, card_truncatedSup_union_add_card_truncatedSup_infs, compl_truncatedInf, compl_truncatedSup, le_truncatedSup, map_truncatedInf, map_truncatedSup, truncatedInf_empty, truncatedInf_le, truncatedInf_of_isAntichain, truncatedInf_of_mem, truncatedInf_of_notMem, truncatedInf_singleton, truncatedInf_sups, truncatedInf_sups_of_notMem, truncatedInf_union, truncatedInf_union_left, truncatedInf_union_of_notMem, truncatedInf_union_right, truncatedSup_empty, truncatedSup_infs, truncatedSup_infs_of_notMem, truncatedSup_of_isAntichain, truncatedSup_of_mem, truncatedSup_of_notMem, truncatedSup_singleton, truncatedSup_union, truncatedSup_union_left, truncatedSup_union_of_notMem, truncatedSup_union_right
37
Total41

AhlswedeZhang

Definitions

NameCategoryTheorems
infSum πŸ“–CompOp
4 mathmath: infSum_eq_one, IsAntichain.le_infSum, infSum_compls_add_supSum, infSum_union_add_infSum_sups
supSum πŸ“–CompOp
4 mathmath: supSum_union_add_supSum_infs, infSum_compls_add_supSum, supSum_of_univ_notMem, supSum_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
infSum_compls_add_supSum πŸ“–mathematicalβ€”infSum
Finset.compls
Finset
Finset.booleanAlgebra
supSum
Fintype.card
Finset.sum
Rat.addCommMonoid
Finset.range
β€”compl_injective
Finset.map_univ_of_surjective
compl_surjective
Finset.sum_map
Finset.sum_congr
Finset.card_compl
Nat.cast_sub
Finset.card_le_univ
Nat.choose_symm
Finset.univ_map_embedding
sub_add_cancel
infSum_eq_one πŸ“–mathematicalFinset.Nonempty
Finset
Finset.instMembership
Finset.instEmptyCollection
infSumβ€”Finset.compls_compls
eq_sub_of_add_eq
infSum_compls_add_supSum
supSum_of_univ_notMem
Finset.Nonempty.compls
Finset.compl_univ
add_sub_cancel_left
infSum_union_add_infSum_sups πŸ“–mathematicalβ€”infSum
Finset
Finset.instUnion
Finset.decidableEq
HasSups.sups
Finset.hasSups
Lattice.toSemilatticeSup
Finset.instLattice
β€”Finset.sum_add_distrib
Finset.sum_congr
Finset.card_truncatedInf_union_add_card_truncatedInf_sups
supSum_of_univ_notMem πŸ“–mathematicalFinset.Nonempty
Finset
Finset.instMembership
Finset.univ
supSum
Fintype.card
Finset.sum
Rat.addCommMonoid
Finset.range
β€”Finset.Nonempty.exists_eq_singleton_or_nontrivial
supSum_singleton
LT.lt.ne
Finset.Nonempty.card_pos
Finset.card_eq_succ
Finset.instLawfulSingleton
Finset.insert_eq
eq_sub_of_add_eq
supSum_union_add_supSum_infs
Finset.singleton_infs
Finset.mem_insert_self
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.mem_insert_of_mem
LE.le.trans_lt
Finset.card_image_le
Finset.Nonempty.image
add_sub_cancel_right
supSum_singleton πŸ“–mathematicalβ€”supSum
Finset
Finset.instSingleton
Fintype.card
Finset.sum
Rat.addCommMonoid
Finset.range
β€”Finset.truncatedSup_singleton
sub_self
zero_div
sub_eq_of_eq_add
Finset.sum_congr
Finset.sum_ite
Finset.sum_const_zero
add_zero
Finset.filter_subset_univ
Finset.sum_powerset
Finset.card_lt_iff_ne_univ
mul_div_assoc
nsmul_eq_mul
Finset.sum_powersetCard
supSum_union_add_supSum_infs πŸ“–mathematicalβ€”supSum
Finset
Finset.instUnion
Finset.decidableEq
HasInfs.infs
Finset.hasInfs
Lattice.toSemilatticeInf
Finset.instLattice
β€”Finset.sum_add_distrib
Finset.sum_congr
Finset.card_truncatedSup_union_add_card_truncatedSup_infs

AhlswedeZhang.IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
le_infSum πŸ“–mathematicalIsAntichain
Finset
Finset.instHasSubset
SetLike.coe
Finset.instSetLike
Finset.instMembership
Finset.instEmptyCollection
Finset.sum
Rat.addCommMonoid
Nat.choose
Fintype.card
Finset.card
AhlswedeZhang.infSum
β€”Finset.sum_congr
Finset.truncatedInf_of_isAntichain
div_mul_cancel_leftβ‚€
Finset.Nonempty.card_pos
Finset.nonempty_iff_ne_empty
ne_of_gt
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.one
Rat.nontrivial
Finset.sum_le_univ_sum_of_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_nonneg'
mul_nonneg
Rat.instPosMulMono

Finset

Definitions

NameCategoryTheorems
truncatedInf πŸ“–CompOp
16 mathmath: map_truncatedInf, truncatedInf_of_isAntichain, truncatedInf_union, truncatedInf_le, truncatedInf_union_of_notMem, truncatedInf_union_left, truncatedInf_empty, card_truncatedInf_union_add_card_truncatedInf_sups, truncatedInf_singleton, truncatedInf_sups_of_notMem, truncatedInf_sups, compl_truncatedInf, compl_truncatedSup, truncatedInf_union_right, truncatedInf_of_mem, truncatedInf_of_notMem
truncatedSup πŸ“–CompOp
16 mathmath: truncatedSup_infs, truncatedSup_union_of_notMem, le_truncatedSup, truncatedSup_of_mem, truncatedSup_empty, truncatedSup_singleton, truncatedSup_union, truncatedSup_union_left, truncatedSup_union_right, map_truncatedSup, compl_truncatedInf, truncatedSup_infs_of_notMem, truncatedSup_of_isAntichain, truncatedSup_of_notMem, compl_truncatedSup, card_truncatedSup_union_add_card_truncatedSup_infs

Theorems

NameKindAssumesProvesValidatesDepends On
card_truncatedInf_union_add_card_truncatedInf_sups πŸ“–mathematicalβ€”card
truncatedInf
Finset
Lattice.toSemilatticeInf
instLattice
instDecidableLE
boundedOrder
instUnion
decidableEq
HasSups.sups
hasSups
Lattice.toSemilatticeSup
β€”truncatedInf_union
truncatedInf_sups
card_inter_add_card_union
truncatedInf_union_left
truncatedInf_of_notMem
truncatedInf_sups_of_notMem
truncatedInf_union_right
add_comm
truncatedInf_union_of_notMem
card_truncatedSup_union_add_card_truncatedSup_infs πŸ“–mathematicalβ€”card
truncatedSup
Finset
Lattice.toSemilatticeSup
instLattice
instDecidableLE
CoheytingAlgebra.toOrderTop
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
booleanAlgebra
instUnion
decidableEq
HasInfs.infs
hasInfs
Lattice.toSemilatticeInf
β€”truncatedSup_union
truncatedSup_infs
card_union_add_card_inter
truncatedSup_union_left
truncatedSup_of_notMem
truncatedSup_infs_of_notMem
truncatedSup_union_right
add_comm
truncatedSup_union_of_notMem
compl_truncatedInf πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
truncatedInf
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
BooleanAlgebra.toBoundedOrder
truncatedSup
Lattice.toSemilatticeSup
CoheytingAlgebra.toOrderTop
compls
β€”map_truncatedInf
compl_truncatedSup πŸ“–mathematicalβ€”Compl.compl
BooleanAlgebra.toCompl
truncatedSup
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
CoheytingAlgebra.toOrderTop
truncatedInf
Lattice.toSemilatticeInf
BooleanAlgebra.toBoundedOrder
compls
β€”map_truncatedSup
le_truncatedSup πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
truncatedSup
β€”truncatedSup.eq_1
LE.le.trans
le_sup'
mem_filter
le_top
map_truncatedInf πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
instFunLikeOrderIso
truncatedInf
map
Equiv.toEmbedding
RelIso.toEquiv
β€”coe_map
Set.image_congr
upperClosure_image
OrderIso.symm_apply_apply
map_finset_inf'
InfTopHomClass.toInfHomClass
OrderIsoClass.toInfTopHomClass
OrderIso.instOrderIsoClass
BotHomClass.map_bot
OrderIsoClass.toBotHomClass
map_nonempty
filter_map
filter.congr_simp
inf'_congr
inf'_map
map_truncatedSup πŸ“–mathematicalβ€”DFunLike.coe
OrderIso
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instFunLikeOrderIso
truncatedSup
BoundedOrder.toOrderTop
map
Equiv.toEmbedding
RelIso.toEquiv
β€”coe_map
Set.image_congr
lowerClosure_image
OrderIso.symm_apply_apply
map_finset_sup'
OrderIsoClass.toSupHomClass
OrderIso.instOrderIsoClass
TopHomClass.map_top
OrderIsoClass.toTopHomClass
map_nonempty
filter_map
filter.congr_simp
sup'_congr
sup'_map
truncatedInf_empty πŸ“–mathematicalβ€”truncatedInf
Finset
instEmptyCollection
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
BoundedOrder.toOrderBot
β€”truncatedInf_of_notMem
coe_empty
upperClosure_empty
truncatedInf_le πŸ“–mathematicalβ€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
truncatedInf
β€”LE.le.trans'
inf'_le
mem_filter
bot_le
truncatedInf_of_isAntichain πŸ“–mathematicalIsAntichain
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.coe
Finset
instSetLike
instMembership
truncatedInfβ€”le_antisymm
truncatedInf_le
subset_upperClosure
truncatedInf_of_mem
Eq.ge
IsAntichain.eq
truncatedInf_of_mem πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
inf'
filter
β€”β€”
truncatedInf_of_notMem πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”β€”
truncatedInf_singleton πŸ“–mathematicalβ€”truncatedInf
Finset
instSingleton
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”coe_singleton
upperClosure_singleton
inf'_congr
filter_true_of_mem
truncatedInf_sups πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
HasSups.sups
hasSups
Lattice.toSemilatticeSup
SemilatticeSup.toMax
β€”filter_sups_le
Nonempty.product
truncatedInf_of_mem
inf'_congr
inf'_sup_inf'
Nonempty.of_image
inf'_image
truncatedInf_sups_of_notMem πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.instMembership
UpperSet.instSetLike
UpperSet.instMax
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
HasSups.sups
hasSups
Lattice.toSemilatticeSup
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”truncatedInf_of_notMem
coe_sups
upperClosure_sups
truncatedInf_union πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
instUnion
SemilatticeInf.toMin
β€”filter_union
truncatedInf_of_mem
inf'_congr
inf'_union
truncatedInf_union_left πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
instUnion
β€”filter_union
filter_false_of_mem
union_empty
truncatedInf_of_mem
inf'_congr
truncatedInf_union_of_notMem πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
instUnion
Bot.bot
OrderBot.toBot
BoundedOrder.toOrderBot
β€”truncatedInf_of_notMem
coe_union
upperClosure_union
truncatedInf_union_right πŸ“–mathematicalUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
SetLike.instMembership
UpperSet.instSetLike
upperClosure
SetLike.coe
Finset
instSetLike
truncatedInf
instUnion
β€”union_comm
truncatedInf_union_left
truncatedSup_empty πŸ“–mathematicalβ€”truncatedSup
Finset
instEmptyCollection
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
β€”truncatedSup_of_notMem
coe_empty
lowerClosure_empty
truncatedSup_infs πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
SemilatticeSup.toPartialOrder
HasInfs.infs
hasInfs
SemilatticeInf.toMin
β€”filter_infs_le
Nonempty.product
truncatedSup_of_mem
sup'_congr
sup'_inf_sup'
Nonempty.of_image
sup'_image
truncatedSup_infs_of_notMem πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
SetLike.instMembership
LowerSet.instSetLike
LowerSet.instMin
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
Lattice.toSemilatticeSup
BoundedOrder.toOrderTop
SemilatticeSup.toPartialOrder
HasInfs.infs
hasInfs
Top.top
OrderTop.toTop
β€”truncatedSup_of_notMem
coe_infs
lowerClosure_infs
truncatedSup_of_isAntichain πŸ“–mathematicalIsAntichain
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.coe
Finset
instSetLike
instMembership
truncatedSupβ€”le_antisymm
subset_lowerClosure
truncatedSup_of_mem
Eq.ge
IsAntichain.eq
le_truncatedSup
truncatedSup_of_mem πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
sup'
filter
β€”β€”
truncatedSup_of_notMem πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
Top.top
OrderTop.toTop
β€”β€”
truncatedSup_singleton πŸ“–mathematicalβ€”truncatedSup
Finset
instSingleton
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Top.top
OrderTop.toTop
β€”coe_singleton
lowerClosure_singleton
sup'_congr
filter_true_of_mem
truncatedSup_union πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
instUnion
SemilatticeSup.toMax
β€”filter_union
truncatedSup_of_mem
sup'_congr
sup'_union
truncatedSup_union_left πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
instUnion
β€”filter_union
filter_false_of_mem
union_empty
truncatedSup_of_mem
sup'_congr
truncatedSup_union_of_notMem πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
instUnion
Top.top
OrderTop.toTop
β€”truncatedSup_of_notMem
truncatedSup_union_right πŸ“–mathematicalLowerSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
SetLike.instMembership
LowerSet.instSetLike
lowerClosure
SetLike.coe
Finset
instSetLike
truncatedSup
instUnion
β€”union_comm
truncatedSup_union_left

---

← Back to Index