Documentation Verification Report

Down

πŸ“ Source: Mathlib/Combinatorics/SetFamily/Compression/Down.lean

Statistics

MetricCount
Definitionscompression, memberSubfamily, nonMemberSubfamily, term𝓓
4
Theoremscard_compression, compression_idem, erase_mem_compression, erase_mem_compression_of_mem_compression, mem_compression, mem_compression_of_insert_mem_compression, card_memberSubfamily_add_card_nonMemberSubfamily, family_induction_on, image_insert_memberSubfamily, mem_memberSubfamily, mem_nonMemberSubfamily, memberFamily_induction_on, memberSubfamily_image_erase, memberSubfamily_image_insert, memberSubfamily_inter, memberSubfamily_memberSubfamily, memberSubfamily_nonMemberSubfamily, memberSubfamily_union, memberSubfamily_union_nonMemberSubfamily, nonMemberSubfamily_image_insert, nonMemberSubfamily_inter, nonMemberSubfamily_memberSubfamily, nonMemberSubfamily_nonMemberSubfamily, nonMemberSubfamily_union
24
Total28

Down

Definitions

NameCategoryTheorems
compression πŸ“–CompOp
6 mathmath: Finset.shatterer_compress_subset_shatterer, card_compression, Finset.vcDim_compress_le, compression_idem, mem_compression, erase_mem_compression

Theorems

NameKindAssumesProvesValidatesDepends On
card_compression πŸ“–mathematicalβ€”Finset.card
Finset
compression
β€”compression.eq_1
Finset.card_disjUnion
Finset.filter_image
Finset.card_image_of_injOn
Set.InjOn.mono
not_imp_comm
Finset.erase_eq_of_notMem
Finset.mem_filter
Finset.mem_coe
Finset.erase_injOn'
Finset.card_union_of_disjoint
Finset.disjoint_filter_filter_not
Finset.filter_union_filter_not_eq
compression_idem πŸ“–mathematicalβ€”compressionβ€”Finset.ext
mem_compression
mem_compression_of_insert_mem_compression
erase_mem_compression_of_mem_compression
erase_mem_compression πŸ“–mathematicalFinset
Finset.instMembership
compression
Finset.erase
β€”Finset.erase_idem
Finset.insert_erase
Finset.erase_ne_self
em
erase_mem_compression_of_mem_compression πŸ“–mathematicalFinset
Finset.instMembership
compression
Finset.eraseβ€”Finset.erase_idem
Finset.erase_eq_of_notMem
Finset.insert_ne_self
mem_compression πŸ“–mathematicalβ€”Finset
Finset.instMembership
compression
Finset.erase
Finset.instInsert
β€”Finset.insert_erase
Finset.erase_ne_self
Finset.erase_insert
Finset.insert_ne_self
mem_compression_of_insert_mem_compression πŸ“–β€”Finset
Finset.instMembership
compression
Finset.instInsert
β€”β€”Finset.insert_eq_of_mem
Finset.erase_insert
erase_mem_compression_of_mem_compression

Finset

Definitions

NameCategoryTheorems
memberSubfamily πŸ“–CompOp
13 mathmath: card_memberSubfamily_add_card_nonMemberSubfamily, memberSubfamily_image_erase, IsLowerSet.memberSubfamily, nonMemberSubfamily_memberSubfamily, memberSubfamily_inter, memberSubfamily_nonMemberSubfamily, memberSubfamily_image_insert, memberSubfamily_union_nonMemberSubfamily, IsLowerSet.memberSubfamily_subset_nonMemberSubfamily, image_insert_memberSubfamily, mem_memberSubfamily, memberSubfamily_memberSubfamily, memberSubfamily_union
nonMemberSubfamily πŸ“–CompOp
11 mathmath: card_memberSubfamily_add_card_nonMemberSubfamily, nonMemberSubfamily_union, nonMemberSubfamily_memberSubfamily, nonMemberSubfamily_inter, nonMemberSubfamily_image_insert, mem_nonMemberSubfamily, memberSubfamily_nonMemberSubfamily, IsLowerSet.nonMemberSubfamily, memberSubfamily_union_nonMemberSubfamily, nonMemberSubfamily_nonMemberSubfamily, IsLowerSet.memberSubfamily_subset_nonMemberSubfamily

Theorems

NameKindAssumesProvesValidatesDepends On
card_memberSubfamily_add_card_nonMemberSubfamily πŸ“–mathematicalβ€”card
Finset
memberSubfamily
nonMemberSubfamily
β€”memberSubfamily.eq_1
nonMemberSubfamily.eq_1
card_image_of_injOn
Set.InjOn.mono
erase_injOn'
coe_filter
card_filter_add_card_filter_not
family_induction_on πŸ“–β€”Finset
instEmptyCollection
instSingleton
image
decidableEq
instInsert
β€”β€”memberFamily_induction_on
image_insert_memberSubfamily
image_insert_memberSubfamily πŸ“–mathematicalβ€”image
Finset
decidableEq
instInsert
memberSubfamily
filter
instMembership
decidableMem
β€”ext
mem_insert_self
insert_erase
notMem_erase
mem_memberSubfamily πŸ“–mathematicalβ€”Finset
instMembership
memberSubfamily
instInsert
β€”insert_erase
notMem_erase
erase_insert
mem_nonMemberSubfamily πŸ“–mathematicalβ€”Finset
instMembership
nonMemberSubfamily
β€”β€”
memberFamily_induction_on πŸ“–β€”Finset
instEmptyCollection
instSingleton
β€”β€”le_sup
induction
subset_singleton_iff
subset_singleton_iff'
subset_insert_iff_of_notMem
insert_subset_insert_iff
memberSubfamily_image_erase πŸ“–mathematicalβ€”memberSubfamily
image
Finset
decidableEq
erase
instEmptyCollection
β€”mem_insert_self
notMem_erase
memberSubfamily_image_insert πŸ“–mathematicalFinset
instMembership
memberSubfamily
image
decidableEq
instInsert
β€”ext
Set.LeftInvOn.injOn
insert_erase_invOn
memberSubfamily_inter πŸ“–mathematicalβ€”memberSubfamily
Finset
instInter
decidableEq
β€”filter_inter_distrib
image_inter_of_injOn
Set.InjOn.mono
coe_filter
erase_injOn'
memberSubfamily_memberSubfamily πŸ“–mathematicalβ€”memberSubfamily
Finset
instEmptyCollection
β€”ext
insert_eq_of_mem
memberSubfamily_nonMemberSubfamily πŸ“–mathematicalβ€”memberSubfamily
nonMemberSubfamily
Finset
instEmptyCollection
β€”ext
memberSubfamily_union πŸ“–mathematicalβ€”memberSubfamily
Finset
instUnion
decidableEq
β€”filter_union
image_union
memberSubfamily_union_nonMemberSubfamily πŸ“–mathematicalβ€”Finset
instUnion
decidableEq
memberSubfamily
nonMemberSubfamily
image
erase
β€”ext
erase_insert
erase_eq_of_notMem
insert_erase
notMem_erase
nonMemberSubfamily_image_insert πŸ“–mathematicalβ€”nonMemberSubfamily
image
Finset
decidableEq
instInsert
instEmptyCollection
β€”β€”
nonMemberSubfamily_inter πŸ“–mathematicalβ€”nonMemberSubfamily
Finset
instInter
decidableEq
β€”filter_inter_distrib
nonMemberSubfamily_memberSubfamily πŸ“–mathematicalβ€”nonMemberSubfamily
memberSubfamily
β€”ext
nonMemberSubfamily_nonMemberSubfamily πŸ“–mathematicalβ€”nonMemberSubfamilyβ€”ext
nonMemberSubfamily_union πŸ“–mathematicalβ€”nonMemberSubfamily
Finset
instUnion
decidableEq
β€”filter_union

FinsetFamily

Definitions

NameCategoryTheorems
term𝓓 πŸ“–CompOpβ€”

---

← Back to Index