Documentation Verification Report

UV

πŸ“ Source: Mathlib/Combinatorics/SetFamily/Compression/UV.lean

Statistics

MetricCount
Definitionsterm𝓒, IsCompressed, compress, compression
4
TheoremsuvCompression, eq, card_compress, card_compression, card_shadow_compression_le, compress_disjoint, compress_idem, compress_injOn, compress_mem_compression, compress_mem_compression_of_mem_compression, compress_of_disjoint_of_le, compress_of_disjoint_of_le', compress_sdiff_sdiff, compress_self, compression_idem, compression_self, disjoint_of_mem_compression_of_notMem, isCompressed_self, le_of_mem_compression_of_notMem, mem_compression, mem_of_mem_compression, shadow_compression_subset_compression_shadow, sup_sdiff_mem_of_mem_compression, sup_sdiff_mem_of_mem_compression_of_notMem, sup_sdiff_injOn
25
Total29

FinsetFamily

Definitions

NameCategoryTheorems
term𝓒 πŸ“–CompOpβ€”

Set.Sized

Theorems

NameKindAssumesProvesValidatesDepends On
uvCompression πŸ“–mathematicalFinset.card
Set.Sized
SetLike.coe
Finset
Finset.instSetLike
UV.compression
Finset.instGeneralizedBooleanAlgebra
Finset.decidableDisjoint
Finset.instDecidableLE
Finset.decidableEq
β€”UV.card_compress

UV

Definitions

NameCategoryTheorems
IsCompressed πŸ“–MathDef
1 mathmath: isCompressed_self
compress πŸ“–CompOp
12 mathmath: compress_injOn, compress_of_disjoint_of_le', compress_self, compress_sdiff_sdiff, card_compress, compress_mem_compression, Finset.UV.toColex_compress_lt_toColex, compress_of_disjoint_of_le, compress_idem, compress_disjoint, mem_compression, compress_mem_compression_of_mem_compression
compression πŸ“–CompOp
9 mathmath: shadow_compression_subset_compression_shadow, IsCompressed.eq, card_shadow_compression_le, compression_self, Set.Sized.uvCompression, compress_mem_compression, compression_idem, mem_compression, card_compression

Theorems

NameKindAssumesProvesValidatesDepends On
card_compress πŸ“–mathematicalFinset.cardcompress
Finset
Finset.instGeneralizedBooleanAlgebra
Finset.decidableDisjoint
Finset.instDecidableLE
β€”Finset.card_sdiff_of_subset
LE.le.trans
le_sup_left
Finset.sup_eq_union
Finset.card_union_of_disjoint
Disjoint.symm
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
card_compression πŸ“–mathematicalβ€”Finset.card
compression
β€”compression.eq_1
Finset.card_union_of_disjoint
compress_disjoint
Finset.filter_image
Finset.card_image_of_injOn
compress_injOn
Finset.disjoint_filter_filter_not
Finset.filter_union_filter_not_eq
card_shadow_compression_le πŸ“–mathematicalFinset
Finset.instMembership
IsCompressed
Finset.instGeneralizedBooleanAlgebra
Finset.decidableDisjoint
Finset.instDecidableLE
Finset.decidableEq
Finset.erase
Finset.card
Finset.shadow
compression
β€”LE.le.trans
Finset.card_le_card
shadow_compression_subset_compression_shadow
Eq.le
card_compression
compress_disjoint πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Finset.filter
Finset.instMembership
compress
Finset.decidableMem
Finset.image
β€”Finset.disjoint_left
Finset.mem_filter
compress_idem πŸ“–mathematicalβ€”compressβ€”le_sdiff_right
sdiff_bot
sup_assoc
sup_idem
compress_injOn πŸ“–mathematicalβ€”Set.InjOn
compress
SetLike.coe
Finset
Finset.instSetLike
Finset.filter
Finset.instMembership
Finset.decidableMem
β€”sup_sdiff_injOn
compress.eq_1
Finset.mem_filter
Finset.mem_coe
compress_mem_compression πŸ“–mathematicalFinset
Finset.instMembership
compression
compress
β€”mem_compression
compress_idem
compress_mem_compression_of_mem_compression πŸ“–mathematicalFinset
Finset.instMembership
compression
compressβ€”mem_compression
compress_idem
compress_of_disjoint_of_le πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
compress
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”
compress_of_disjoint_of_le' πŸ“–mathematicalDisjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
compress
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”compress_of_disjoint_of_le
disjoint_sdiff_self_right
le_sdiff
le_sup_right
Disjoint.mono_right
sdiff_sup_cancel
le_sup_of_le_left
Disjoint.sup_sdiff_cancel_right
Disjoint.symm
compress_sdiff_sdiff πŸ“–mathematicalβ€”compress
GeneralizedBooleanAlgebra.toSDiff
β€”compress_of_disjoint_of_le
disjoint_sdiff_self_left
sdiff_le
sup_sdiff_self_right
sup_sdiff
Disjoint.sdiff_eq_left
disjoint_sdiff_self_right
sup_eq_right
sdiff_sdiff_le
compress_self πŸ“–mathematicalβ€”compressβ€”Disjoint.sup_sdiff_cancel_right
Disjoint.symm
compression_idem πŸ“–mathematicalβ€”compressionβ€”Finset.filter_false_of_mem
compress_mem_compression_of_mem_compression
compression.eq_1
Finset.filter_image
Finset.image_empty
Finset.filter_union_filter_not_eq
compression_self πŸ“–mathematicalβ€”compressionβ€”Finset.ext
Finset.mem_filter
compress_self
Finset.eq_empty_of_forall_notMem
Finset.union_empty
disjoint_of_mem_compression_of_notMem πŸ“–mathematicalFinset
Finset.instMembership
compression
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
GeneralizedBooleanAlgebra.toOrderBot
β€”mem_compression
disjoint_sdiff_self_right
isCompressed_self πŸ“–mathematicalβ€”IsCompressedβ€”compression_self
le_of_mem_compression_of_notMem πŸ“–mathematicalFinset
Finset.instMembership
compression
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”mem_compression
le_sdiff
le_sup_right
Disjoint.mono_right
mem_compression πŸ“–mathematicalβ€”Finset
Finset.instMembership
compression
compress
β€”β€”
mem_of_mem_compression πŸ“–β€”Finset
Finset.instMembership
compression
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Bot.bot
GeneralizedBooleanAlgebra.toBot
β€”β€”mem_compression
le_sdiff_right
sup_bot_eq
sdiff_bot
shadow_compression_subset_compression_shadow πŸ“–mathematicalFinset
Finset.instMembership
IsCompressed
Finset.instGeneralizedBooleanAlgebra
Finset.decidableDisjoint
Finset.instDecidableLE
Finset.decidableEq
Finset.erase
Finset.instHasSubset
Finset.shadow
compression
β€”Finset.mem_shadow_iff_insert_mem
le_of_mem_compression_of_notMem
disjoint_of_mem_compression_of_notMem
sup_sdiff_mem_of_mem_compression_of_notMem
Disjoint.mono_left
Finset.subset_insert
Disjoint.symm
Finset.disjoint_of_subset_right
Finset.disjoint_right
Finset.mem_insert_self
Disjoint.sdiff_eq_left
sup_sdiff_mem_of_mem_compression
IsCompressed.eq
Finset.union_sdiff_distrib
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.erase_subset
Finset.subset_union_right
Finset.disjoint_of_subset_left
Finset.disjoint_sdiff
Finset.sdiff_union_erase_cancel
Finset.subset_union_left
Finset.erase_union_distrib
Finset.erase_insert
Finset.erase_eq_of_notMem
Finset.sdiff_erase
Finset.mem_union_right
Finset.union_sdiff_cancel_right
Finset.subset_insert_iff
Finset.notMem_sdiff_of_notMem_left
Finset.notMem_union
Finset.insert_sdiff_of_notMem
Finset.insert_union
Finset.subset_sdiff
mem_of_mem_compression
Finset.mem_union_left
Finset.insert_union_comm
Finset.insert_erase
Finset.sdiff_union_of_subset
Finset.mem_sdiff
Finset.disjoint_insert_right
mem_compression
compress.eq_1
Finset.mem_shadow_iff
Finset.notMem_mono
Finset.notMem_erase
LE.le.trans
Finset.notMem_sdiff_of_mem_right
Finset.disjoint_erase_comm
Finset.erase_union_of_mem
Finset.union_erase_of_mem
Finset.sup_eq_union
Finset.disjoint_of_erase_right
Finset.mem_union
compress_of_disjoint_of_le'
sup_sdiff_mem_of_mem_compression πŸ“–mathematicalFinset
Finset.instMembership
compression
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
Disjoint
GeneralizedBooleanAlgebra.toOrderBot
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”compress_of_disjoint_of_le
mem_compression
Disjoint.mono_right
compress_idem
sdiff_le_sdiff_right
le_sup_right
disjoint_self
Disjoint.sdiff_eq_left
disjoint_sdiff_self_right
compress_self
sup_bot_eq
sdiff_bot
sup_sdiff_mem_of_mem_compression_of_notMem πŸ“–mathematicalFinset
Finset.instMembership
compression
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
β€”mem_compression
sdiff_sup_cancel
le_sup_of_le_left
sup_sdiff_right_self
Disjoint.sdiff_eq_left
Disjoint.symm

UV.IsCompressed

Theorems

NameKindAssumesProvesValidatesDepends On
eq πŸ“–mathematicalUV.IsCompressedUV.compressionβ€”β€”

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
sup_sdiff_injOn πŸ“–mathematicalβ€”Set.InjOn
GeneralizedBooleanAlgebra.toSDiff
SemilatticeSup.toMax
Lattice.toSemilatticeSup
GeneralizedCoheytingAlgebra.toLattice
GeneralizedBooleanAlgebra.toGeneralizedCoheytingAlgebra
setOf
Disjoint
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedBooleanAlgebra.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
β€”sdiff_sup_cancel
Disjoint.sup_sdiff_cancel_right
Disjoint.symm
sdiff_sdiff_comm

---

← Back to Index