Documentation Verification Report

FourFunctions

πŸ“ Source: Mathlib/Combinatorics/SetFamily/FourFunctions.lean

Statistics

MetricCount
Definitions0
Theoremscard_le_card_diffs, four_functions_theorem, le_card_diffs_mul_card_diffs, le_card_infs_mul_card_sups, collapse_eq, collapse_modular, collapse_nonneg, collapse_of_mem, fkg, four_functions_theorem, four_functions_theorem_univ, holley, le_collapse_of_insert_mem, le_collapse_of_mem, sum_collapse
15
Total15

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_card_diffs πŸ“–mathematicalβ€”card
diffs
β€”le_of_pow_le_pow_leftβ‚€
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
two_ne_zero
zero_le
Nat.instCanonicallyOrderedAdd
le_card_diffs_mul_card_diffs
four_functions_theorem πŸ“–mathematicalPi.hasLe
Finset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instInter
instUnion
instHasSubset
powerset
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
HasInfs.infs
hasInfs
decidableEq
instLattice
HasSups.sups
hasSups
Lattice.toSemilatticeSup
β€”induction
MulZeroClass.mul_zero
sum_congr
infs_empty
sups_empty
sum_singleton
MulZeroClass.zero_mul
infs_singleton
inf_of_le_right
sups_singleton
sup_of_le_left
image_singleton
subset_refl
instReflSubset
subset_rfl
powerset_infs_powerset_self
infs_subset
powerset_sups_powerset_self
sups_subset
sum_collapse
collapse_nonneg
collapse_modular
Subset.rfl
le_card_diffs_mul_card_diffs πŸ“–mathematicalβ€”card
diffs
β€”Booleanisation.liftLatticeHom_injective
map_eq_image
image_imageβ‚‚_distrib
card_map
card_compls
infs_compls_eq_diffs
compls_sups
compls_compls
compls_infs_eq_diffs
le_card_infs_mul_card_sups
le_card_infs_mul_card_sups πŸ“–mathematicalβ€”card
HasInfs.infs
Finset
hasInfs
Lattice.toSemilatticeInf
DistribLattice.toLattice
HasSups.sups
hasSups
Lattice.toSemilatticeSup
β€”sum_congr
sum_const
nsmul_eq_mul
mul_one
four_functions_theorem
Nat.instIsStrictOrderedRing
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
zero_le_one
Pi.instZeroLEOneClass
Nat.instZeroLEOneClass
le_rfl

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
collapse_eq πŸ“–mathematicalFinset
Finset.instMembership
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.decidableMem
Finset.decidableEq
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
Finset.instInsert
β€”Finset.sum_congr
Finset.sum_insert
Finset.mem_insert_self
Finset.sum_singleton
add_zero
zero_add
collapse_modular πŸ“–mathematicalFinset
Finset.instMembership
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Finset.instInter
Finset.instUnion
Finset.instHasSubset
HasInfs.infs
Finset.hasInfs
Finset.decidableEq
Finset.instLattice
HasSups.sups
Finset.hasSups
Lattice.toSemilatticeSup
β€”HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.subset_insert
Finset.insert_subset_insert
Finset.notMem_mono
Finset.inter_subset_left
Finset.notMem_union
collapse_eq
collapse_of_mem
Finset.inter_mem_infs
Finset.insert_inter_distrib
Finset.union_mem_sups
Finset.insert_union_distrib
Finset.union_insert
Finset.insert_union
Finset.insert_eq_of_mem
Finset.insert_inter_of_notMem
Finset.inter_insert_of_notMem
Finset.inter_insert_of_mem
add_zero
add_mul
Distrib.rightDistribClass
LE.le.trans
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
mul_add
Distrib.leftDistribClass
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_collapse_of_mem
add_nonneg
zero_add
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_collapse_of_insert_mem
MulZeroClass.mul_zero
mul_nonneg
collapse_nonneg
mul_le_mul
MulZeroClass.zero_mul
collapse_nonneg πŸ“–β€”Pi.hasLe
Finset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”β€”Finset.sum_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
collapse_of_mem πŸ“–mathematicalFinset
Finset.instMembership
Finset.instInsert
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”collapse_eq
fkg πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monotone
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”four_functions_theorem_univ
mul_nonneg
IsOrderedRing.toPosMulMono
Pi.isOrderedRing
IsStrictOrderedRing.toIsOrderedRing
mul_mul_mul_comm
mul_assoc
mul_le_mul
IsOrderedRing.toMulPosMono
le_sup_left
le_sup_right
four_functions_theorem πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
HasInfs.infs
Finset
Finset.hasInfs
HasSups.sups
Finset.hasSups
β€”IsSublattice.supClosed
isSublattice_latticeClosure
IsSublattice.infClosed
Set.Finite.to_subtype
Set.Finite.latticeClosure
Set.Finite.union
Finset.finite_toSet
Function.Injective.injOn
Subtype.coe_injective
Finset.map_eq_image
Finset.image_preimage
Finset.filter.congr_simp
Subtype.range_coe_subtype
subset_latticeClosure
Set.subset_union_left
Set.subset_union_right
exists_birkhoff_representation
Finite.of_fintype
Function.extend_nonneg
le_rfl
em
LatticeHomClass.toSupHomClass
LatticeHom.instLatticeHomClass
LatticeHomClass.toInfHomClass
Function.Injective.extend_apply
Function.extend_apply'
MulZeroClass.mul_zero
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
MulZeroClass.zero_mul
Finset.sum_congr
Finset.sum_map
four_functions_theorem_univ πŸ“–mathematicalPi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
β€”Finset.sum_congr
Finset.univ_infs_univ
Finset.univ_sups_univ
four_functions_theorem
holley πŸ“–β€”Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Monotone
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
Finset.univ
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SemilatticeInf.toMin
SemilatticeSup.toMax
Lattice.toSemilatticeSup
β€”β€”LE.le.eq_or_lt
Finset.sum_congr
MulZeroClass.mul_zero
Finset.sum_const_zero
Fintype.sum_eq_zero_iff_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
LT.lt.le
four_functions_theorem
mul_nonneg
IsOrderedRing.toPosMulMono
Pi.isOrderedRing
mul_left_comm
mul_comm
sup_comm
inf_comm
mul_le_mul
IsOrderedRing.toMulPosMono
le_sup_left
Finset.univ_infs_univ
Finset.univ_sups_univ
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Fintype.sum_pos
IsStrictOrderedRing.toIsOrderedCancelAddMonoid
le_collapse_of_insert_mem πŸ“–β€”Finset
Finset.instMembership
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
Finset.instInsert
β€”β€”collapse_eq
le_add_of_nonneg_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
zero_add
le_refl
le_collapse_of_mem πŸ“–β€”Finset
Finset.instMembership
Pi.hasLe
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Pi.instZero
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”β€”collapse_eq
le_add_of_nonneg_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
add_zero
le_refl
sum_collapse πŸ“–mathematicalFinset
Finset.instHasSubset
Finset.powerset
Finset.instInsert
Finset.instMembership
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
β€”Finset.sum_ite_mem
Finset.sum_image
Set.InjOn.mono
Finset.notMem_mono
Finset.mem_powerset
Set.LeftInvOn.injOn
Finset.insert_erase_invOn
Finset.sum_add_distrib
Finset.sum_congr
collapse_eq
Finset.ext
Finset.subset_insert_iff
Finset.insert_subset_insert
Finset.mem_insert_self
Finset.insert_erase
Finset.erase_ne_self
Finset.sum_union
Disjoint.mono
inf_le_left
disjoint_sdiff_self_right
Finset.union_inter_distrib_right
Finset.union_sdiff_of_subset
Finset.powerset_mono
Finset.subset_insert
Finset.inter_eq_right

---

← Back to Index