Documentation Verification Report

Intersecting

📁 Source: Mathlib/Combinatorics/SetFamily/Intersecting.lean

Statistics

MetricCount
DefinitionsIntersecting
1
Theoremsbot_notMem, card_le, compl_notMem, disjoint_map_compl, exists_card_eq, exists_mem_finset, exists_mem_set, insert, isUpperSet, isUpperSet', is_max_iff_card_eq, mono, ne_bot, notMem, intersecting, intersecting_empty, intersecting_iff_eq_empty_of_subsingleton, intersecting_iff_pairwise_not_disjoint, intersecting_insert, intersecting_singleton
20
Total21

Set

Definitions

NameCategoryTheorems
Intersecting 📖MathDef
6 mathmath: intersecting_empty, intersecting_iff_eq_empty_of_subsingleton, intersecting_iff_pairwise_not_disjoint, Subsingleton.intersecting, intersecting_insert, intersecting_singleton

Theorems

NameKindAssumesProvesValidatesDepends On
intersecting_empty 📖mathematicalIntersecting
Set
instEmptyCollection
intersecting_iff_eq_empty_of_subsingleton 📖mathematicalIntersecting
Set
instEmptyCollection
Subsingleton.intersecting
subsingleton_of_subsingleton
not_imp_comm
Subsingleton.eq_singleton_of_mem
nonempty_iff_ne_empty
Nonempty.ne_empty
singleton_nonempty
intersecting_iff_pairwise_not_disjoint 📖mathematicalIntersecting
Pairwise
Disjoint
SemilatticeInf.toPartialOrder
intersecting_singleton
Pairwise.eq
eq_singleton_iff_unique_mem
disjoint_self
not_ne_iff
disjoint_bot_left
intersecting_insert 📖mathematicalIntersecting
Set
instInsert
Disjoint
SemilatticeInf.toPartialOrder
Intersecting.mono
subset_insert
Intersecting.ne_bot
mem_insert
mem_insert_of_mem
Intersecting.insert
intersecting_singleton 📖mathematicalIntersecting
Set
instSingletonSet

Set.Intersecting

Theorems

NameKindAssumesProvesValidatesDepends On
bot_notMem 📖mathematicalSet.IntersectingSet
Set.instMembership
Bot.bot
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
disjoint_bot_left
card_le 📖mathematicalSet.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Fintype.card
LE.le.trans_eq'
compl_injective
disjoint_map_compl
Finset.card_le_univ
Finset.card_disjUnion
Finset.card_map
compl_notMem 📖mathematicalSet.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set
Set.instMembership
Compl.compl
BooleanAlgebra.toCompl
disjoint_compl_right
disjoint_map_compl 📖mathematicalSet.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SetLike.coe
Finset
Finset.instSetLike
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.map
Compl.compl
BooleanAlgebra.toCompl
compl_injective
compl_injective
Finset.disjoint_left
Finset.mem_map
compl_notMem
exists_card_eq 📖mathematicalSet.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SetLike.coe
Finset
Finset.instSetLike
Finset.instHasSubset
Finset.card
Fintype.card
card_le
Set.Subset.rfl
is_max_iff_card_eq
Mathlib.Tactic.Push.not_forall_eq
HasSubset.Subset.trans
Finset.instIsTransSubset
ssubset_iff_subset_ne
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
exists_mem_finset 📖mathematicalSet.Intersecting
Finset
Lattice.toSemilatticeInf
Finset.instLattice
Finset.instOrderBot
Set
Set.instMembership
Finset.instMembershipSet.not_disjoint_iff
Iff.not
Finset.disjoint_coe
exists_mem_set 📖Set.Intersecting
Set
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set.instMembership
Set.not_disjoint_iff
insert 📖mathematicalSet.Intersecting
Disjoint
SemilatticeInf.toPartialOrder
Set
Set.instInsert
disjoint_self
Disjoint.symm
isUpperSet 📖mathematicalSet.IntersectingIsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
insert
eq_bot_mono
ne_bot
Disjoint.mono_left
Set.subset_insert
Set.mem_insert
isUpperSet' 📖mathematicalSet.Intersecting
SetLike.coe
Finset
Finset.instSetLike
IsUpperSet
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Finset.coe_insert
insert
eq_bot_mono
ne_bot
Disjoint.mono_left
Finset.subset_insert
Finset.mem_insert_self
is_max_iff_card_eq 📖mathematicalSet.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Fintype.card
compl_injective
disjoint_map_compl
Finset.coe_eq_univ
Finset.disjUnion_eq_union
Finset.coe_union
Finset.coe_map
Set.image_eq_preimage_of_inverse
compl_compl
Set.eq_univ_of_forall
Finset.ne_insert_of_notMem
Finset.coe_insert
insert
Finset.coe_singleton
Set.intersecting_singleton
top_ne_bot
Finset.singleton_ne_empty
Finset.coe_eq_empty
IsUpperSet.top_notMem
isUpperSet'
compl_bot
Finset.empty_subset
Disjoint.le_compl_left
Finset.subset_insert
Fintype.card.eq_1
Finset.card_disjUnion
Finset.card_map
Finset.eq_of_subset_of_card_le
LE.le.trans_eq
card_le
mono 📖Set
Set.instHasSubset
Set.Intersecting
ne_bot 📖Set.Intersecting
Set
Set.instMembership
bot_notMem
notMem 📖Set.Intersecting
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Set
Set.instMembership
Compl.compl
BooleanAlgebra.toCompl
disjoint_compl_left

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
intersecting 📖mathematicalSet.SubsingletonSet.IntersectingSet.intersecting_iff_pairwise_not_disjoint
pairwise

---

← Back to Index