Documentation Verification Report

Kleitman

📁 Source: Mathlib/Combinatorics/SetFamily/Kleitman.lean

Statistics

MetricCount
Definitions0
Theoremscard_biUnion_le_of_intersecting
1
Total1

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
card_biUnion_le_of_intersecting 📖mathematicalSet.Intersecting
Finset
Lattice.toSemilatticeInf
instLattice
instOrderBot
SetLike.coe
instSetLike
card
biUnion
decidableEq
Monoid.toNatPow
Nat.instMonoid
Fintype.card
—le_total
tsub_eq_zero_of_le
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
LE.le.trans_eq
card_le_card
biUnion_subset
mem_compl
notMem_singleton
Set.Intersecting.ne_bot
card_compl
Fintype.card_finset
card_singleton
cons_induction
tsub_zero
tsub_self
Set.Intersecting.exists_card_eq
instNontrivial
Set.Intersecting.isUpperSet'
Set.Intersecting.is_max_iff_card_eq
LE.le.trans
biUnion_mono
cons_eq_insert
biUnion_insert
card_mono
le_sup_sdiff
card_union_le
union_sdiff_left
sdiff_eq_inter_compl
le_of_mul_le_mul_left
Nat.instAtLeastTwoHAddOfNat
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
pow_succ
mul_add
Distrib.leftDistribClass
mul_assoc
mul_comm
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_le_mul_iff_right₀
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
pow_pos
Nat.instZeroLEOneClass
zero_lt_two'
Set.Intersecting.card_le
mem_cons_self
IsUpperSet.card_inter_le_finset
coe_biUnion
isUpperSet_iUnion₂
subset_cons
coe_compl
IsUpperSet.compl
mul_tsub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
mul_left_comm
two_mul
add_tsub_cancel_left
mul_two
add_mul
Distrib.rightDistribClass
mul_le_mul_right
Nat.instMulLeftMono
add_le_add_right
pow_succ'
add_tsub_assoc_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
pow_right_mono₀
one_le_two
tsub_le_self
tsub_add_eq_add_tsub
card_cons
add_tsub_add_eq_tsub_right
le_refl

---

← Back to Index