Documentation Verification Report

LYM

πŸ“ Source: Mathlib/Combinatorics/SetFamily/LYM.lean

Statistics

MetricCount
Definitionsfalling
1
Theoremsdisjoint_slice_shadow_falling, card_div_choose_le_card_shadow_div_choose, card_mul_le_card_shadow_mul, falling_zero_subset, le_card_falling_div_choose, local_lubell_yamamoto_meshalkin_inequality_div, local_lubell_yamamoto_meshalkin_inequality_mul, lubell_yamamoto_meshalkin_inequality_sum_card_div_choose, lubell_yamamoto_meshalkin_inequality_sum_inv_choose, mem_falling, sized_falling, slice_subset_falling, slice_union_shadow_falling_succ, sum_card_slice_div_choose_le_one, sperner
15
Total16

Finset

Definitions

NameCategoryTheorems
falling πŸ“–CompOp
7 mathmath: falling_zero_subset, slice_subset_falling, le_card_falling_div_choose, slice_union_shadow_falling_succ, mem_falling, sized_falling, IsAntichain.disjoint_slice_shadow_falling

Theorems

NameKindAssumesProvesValidatesDepends On
card_div_choose_le_card_shadow_div_choose πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
card
Nat.choose
Fintype.card
shadow
β€”local_lubell_yamamoto_meshalkin_inequality_div
card_mul_le_card_shadow_mul πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
instSetLike
card
shadow
Fintype.card
β€”local_lubell_yamamoto_meshalkin_inequality_mul
falling_zero_subset πŸ“–mathematicalβ€”Finset
instHasSubset
falling
instSingleton
instEmptyCollection
β€”subset_singleton_iff'
card_eq_zero
sized_falling
le_card_falling_div_choose πŸ“–mathematicalFintype.card
IsAntichain
Finset
instHasSubset
SetLike.coe
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
range
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
slice
Nat.choose
falling
β€”sum_congr
zero_add
sum_singleton
tsub_zero
Nat.instOrderedSub
Nat.choose_self
Nat.cast_one
div_one
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
card_le_card
slice_subset_falling
sum_range_succ
slice_union_shadow_falling_succ
card_union_of_disjoint
IsAntichain.disjoint_slice_shadow_falling
Nat.cast_add
add_div
add_comm
tsub_tsub
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
Nat.instIsOrderedAddMonoid
le_tsub_of_add_le_left
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
le_imp_le_of_le_of_le
add_le_add_right
le_refl
local_lubell_yamamoto_meshalkin_inequality_div
LT.lt.ne'
tsub_pos_iff_lt
sized_falling
local_lubell_yamamoto_meshalkin_inequality_div πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
Semifield.toDivisionSemiring
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
card
Nat.choose
Fintype.card
shadow
β€”lt_or_ge
Nat.choose_eq_zero_of_lt
Nat.cast_zero
div_zero
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
local_lubell_yamamoto_meshalkin_inequality_mul
div_le_div_iffβ‚€
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.choose_pos
LE.le.trans
le_of_mul_le_mul_right
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
mul_assoc
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
mul_comm
Nat.choose_succ_right_eq
add_tsub_add_eq_tsub_right
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
pos_iff_ne_zero
local_lubell_yamamoto_meshalkin_inequality_mul πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
instSetLike
card
shadow
Fintype.card
β€”card_mul_le_card_mul'
card_image_of_injOn
erase_injOn
card_le_card
erase_mem_shadow
erase_subset
le_trans
Set.Sized.shadow
card_compl
insert_inj_on'
mem_coe
Set.Sized.empty_mem_iff
coe_eq_singleton
notMem_empty
shadow_singleton_empty
mem_bipartiteAbove
exists_eq_insert_iff
sized_shadow_iff
mem_image_of_mem
mem_compl
tsub_tsub_le_tsub_add
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
lubell_yamamoto_meshalkin_inequality_sum_card_div_choose πŸ“–mathematicalIsAntichain
Finset
instHasSubset
SetLike.coe
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
range
Fintype.card
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
slice
Nat.choose
AddMonoidWithOne.toOne
β€”sum_flip
LE.le.trans
le_card_falling_div_choose
le_rfl
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Nat.choose_zero_right
zero_lt_one
Nat.instZeroLEOneClass
Nat.cast_one
one_mul
Set.Sized.card_le
sized_falling
lubell_yamamoto_meshalkin_inequality_sum_inv_choose πŸ“–mathematicalIsAntichain
Finset
instHasSubset
SetLike.coe
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
DivisionCommMonoid.toDivisionMonoid
CommGroupWithZero.toDivisionCommMonoid
Semifield.toCommGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Nat.choose
Fintype.card
card
AddMonoidWithOne.toOne
β€”sum_fiberwise_of_maps_to'
Nat.instNoMaxOrder
sum_congr
sum_const
nsmul_eq_mul
div_eq_mul_inv
lubell_yamamoto_meshalkin_inequality_sum_card_div_choose
mem_falling πŸ“–mathematicalβ€”Finset
instMembership
falling
instHasSubset
card
β€”β€”
sized_falling πŸ“–mathematicalβ€”Set.Sized
SetLike.coe
Finset
instSetLike
falling
β€”mem_falling
slice_subset_falling πŸ“–mathematicalβ€”Finset
instHasSubset
slice
falling
β€”mem_falling
Subset.refl
mem_slice
slice_union_shadow_falling_succ πŸ“–mathematicalβ€”Finset
instUnion
decidableEq
slice
shadow
falling
β€”ext
Subset.refl
HasSubset.Subset.trans
instIsTransSubset
erase_subset
card_erase_of_mem
ssubset_iff
ssubset_of_subset_of_ne
instIsNonstrictStrictOrderSubsetSSubset
instAntisymmSubset
Membership.mem.ne_of_notMem
card_insert_of_notMem
mem_insert_self
erase_insert
sum_card_slice_div_choose_le_one πŸ“–mathematicalIsAntichain
Finset
instHasSubset
SetLike.coe
instSetLike
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
range
Fintype.card
DivInvMonoid.toDiv
GroupWithZero.toDivInvMonoid
DivisionSemiring.toGroupWithZero
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
card
slice
Nat.choose
AddMonoidWithOne.toOne
β€”lubell_yamamoto_meshalkin_inequality_sum_card_div_choose

Finset.IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_slice_shadow_falling πŸ“–mathematicalIsAntichain
Finset
Finset.instHasSubset
SetLike.coe
Finset.instSetLike
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.slice
Finset.shadow
Finset.falling
β€”Finset.disjoint_right
Finset.slice_subset
Finset.notMem_erase
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.erase_subset

IsAntichain

Theorems

NameKindAssumesProvesValidatesDepends On
sperner πŸ“–mathematicalIsAntichain
Finset
Finset.instHasSubset
SetLike.coe
Finset.instSetLike
Finset.card
Nat.choose
Fintype.card
β€”Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRingNNRat
NNRat.instNontrivial
Nat.choose_pos
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
inv_antiβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_zero
IsStrictOrderedRing.toZeroLEOneClass
NNRat.instCharZero
Finset.card_le_univ
Nat.mono_cast
Nat.choose_le_middle
Finset.lubell_yamamoto_meshalkin_inequality_sum_inv_choose
Finset.sum_const
nsmul_eq_mul
mul_inv_le_iffβ‚€'
mul_one

---

← Back to Index