Documentation Verification Report

Shadow

πŸ“ Source: Mathlib/Combinatorics/SetFamily/Shadow.lean

Statistics

MetricCount
Definitionsshadow, upShadow, Β«termβˆ‚Β», Β«termβˆ‚βΊΒ»
4
Theoremserase_mem_shadow, exists_subset_of_mem_shadow, exists_subset_of_mem_upShadow, insert_mem_upShadow, mem_shadow_iff, mem_shadow_iff_exists_mem_card_add_one, mem_shadow_iff_exists_sdiff, mem_shadow_iff_insert_mem, mem_shadow_iterate_iff_exists_card, mem_shadow_iterate_iff_exists_mem_card_add, mem_shadow_iterate_iff_exists_sdiff, mem_upShadow_iff, mem_upShadow_iff_erase_mem, mem_upShadow_iff_exists_mem_card_add, mem_upShadow_iff_exists_mem_card_add_one, mem_upShadow_iff_exists_sdiff, mem_upShadow_iterate_iff_exists_card, mem_upShadow_iterate_iff_exists_mem_card_add, mem_upShadow_iterate_iff_exists_sdiff, shadow_compls, shadow_empty, shadow_iterate_empty, shadow_mono, shadow_monotone, shadow_singleton, shadow_singleton_empty, sized_shadow_iff, upShadow_compls, upShadow_empty, upShadow_monotone, shadow, shadow_iterate, upShadow
33
Total37

Finset

Definitions

NameCategoryTheorems
shadow πŸ“–CompOp
32 mathmath: Set.Sized.shadow_iterate, UV.shadow_compression_subset_compression_shadow, mem_shadow_iterate_iff_exists_sdiff, local_lubell_yamamoto_meshalkin_inequality_mul, card_mul_le_card_shadow_mul, shadow_compls, card_div_choose_le_card_shadow_div_choose, local_lubell_yamamoto_meshalkin_inequality_div, UV.card_shadow_compression_le, iterated_kk, erase_mem_shadow, kruskal_katona, mem_shadow_iff_insert_mem, shadow_singleton, shadow_singleton_empty, slice_union_shadow_falling_succ, Colex.shadow_initSeg, shadow_empty, Colex.IsInitSeg.shadow, shadow_mono, mem_shadow_iterate_iff_exists_card, sized_shadow_iff, shadow_iterate_empty, mem_shadow_iff_exists_sdiff, shadow_monotone, upShadow_compls, mem_shadow_iff, mem_shadow_iterate_iff_exists_mem_card_add, mem_shadow_iff_exists_mem_card_add_one, Set.Sized.shadow, IsAntichain.disjoint_slice_shadow_falling, kruskal_katona_lovasz_form
upShadow πŸ“–CompOp
14 mathmath: mem_upShadow_iff_exists_mem_card_add, shadow_compls, Set.Sized.upShadow, upShadow_empty, mem_upShadow_iterate_iff_exists_card, upShadow_monotone, mem_upShadow_iff_exists_sdiff, upShadow_compls, mem_upShadow_iff_erase_mem, mem_upShadow_iff_exists_mem_card_add_one, mem_upShadow_iff, insert_mem_upShadow, mem_upShadow_iterate_iff_exists_sdiff, mem_upShadow_iterate_iff_exists_mem_card_add

Theorems

NameKindAssumesProvesValidatesDepends On
erase_mem_shadow πŸ“–mathematicalFinset
instMembership
shadow
erase
β€”mem_shadow_iff
exists_subset_of_mem_shadow πŸ“–mathematicalFinset
instMembership
shadow
instHasSubsetβ€”mem_shadow_iff_exists_mem_card_add_one
exists_subset_of_mem_upShadow πŸ“–mathematicalFinset
instMembership
upShadow
instHasSubsetβ€”mem_upShadow_iff_exists_mem_card_add_one
insert_mem_upShadow πŸ“–mathematicalFinset
instMembership
upShadow
instInsert
β€”mem_upShadow_iff
mem_shadow_iff πŸ“–mathematicalβ€”Finset
instMembership
shadow
erase
β€”β€”
mem_shadow_iff_exists_mem_card_add_one πŸ“–mathematicalβ€”Finset
instMembership
shadow
instHasSubset
card
β€”mem_shadow_iff_exists_sdiff
card_sdiff_of_subset
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
card_mono
add_comm
mem_shadow_iff_exists_sdiff πŸ“–mathematicalβ€”Finset
instMembership
shadow
instHasSubset
card
instSDiff
β€”β€”
mem_shadow_iff_insert_mem πŸ“–mathematicalβ€”Finset
instMembership
shadow
instInsert
β€”β€”
mem_shadow_iterate_iff_exists_card πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
shadow
card
Disjoint
partialOrder
instOrderBot
instUnion
β€”union_empty
Function.iterate_succ_apply'
insert_union
union_insert
mem_shadow_iterate_iff_exists_mem_card_add πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
shadow
instHasSubset
card
β€”mem_shadow_iterate_iff_exists_sdiff
card_sdiff_of_subset
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
card_mono
add_comm
mem_shadow_iterate_iff_exists_sdiff πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
shadow
instHasSubset
card
instSDiff
β€”mem_shadow_iterate_iff_exists_card
subset_union_left
union_sdiff_cancel_left
disjoint_sdiff
union_sdiff_self_eq_union
union_eq_right
mem_upShadow_iff πŸ“–mathematicalβ€”Finset
instMembership
upShadow
instInsert
β€”β€”
mem_upShadow_iff_erase_mem πŸ“–mathematicalβ€”Finset
instMembership
upShadow
erase
β€”β€”
mem_upShadow_iff_exists_mem_card_add πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
upShadow
instHasSubset
card
β€”Subset.refl
eq_of_subset_of_card_le
Eq.ge
mem_upShadow_iff_exists_mem_card_add_one
HasSubset.Subset.trans
instIsTransSubset
add_right_comm
exists_subsuperset_card_eq
mem_upShadow_iff_exists_mem_card_add_one πŸ“–mathematicalβ€”Finset
instMembership
upShadow
instHasSubset
card
β€”mem_upShadow_iff_exists_sdiff
card_sdiff_of_subset
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
card_mono
add_comm
mem_upShadow_iff_exists_sdiff πŸ“–mathematicalβ€”Finset
instMembership
upShadow
instHasSubset
card
instSDiff
β€”β€”
mem_upShadow_iterate_iff_exists_card πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
upShadow
card
instHasSubset
instSDiff
β€”sdiff_empty
Function.iterate_succ_apply'
erase_sdiff_comm
insert_subset
insert_subset_iff
mem_upShadow_iterate_iff_exists_mem_card_add πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
upShadow
instHasSubset
card
β€”mem_upShadow_iterate_iff_exists_sdiff
card_sdiff_of_subset
tsub_eq_iff_eq_add_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.instCanonicallyOrderedAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
card_mono
add_comm
mem_upShadow_iterate_iff_exists_sdiff πŸ“–mathematicalβ€”Finset
instMembership
Nat.iterate
upShadow
instHasSubset
card
instSDiff
β€”mem_upShadow_iterate_iff_exists_card
sdiff_subset
sdiff_sdiff_eq_self
shadow_compls πŸ“–mathematicalβ€”shadow
compls
Finset
booleanAlgebra
upShadow
β€”ext
compl_involutive
Equiv.exists_congr_left
compl_compl
Function.Involutive.eq_iff
compl_insert
shadow_empty πŸ“–mathematicalβ€”shadow
Finset
instEmptyCollection
β€”β€”
shadow_iterate_empty πŸ“–mathematicalβ€”Nat.iterate
Finset
shadow
instEmptyCollection
β€”β€”
shadow_mono πŸ“–mathematicalFinset
instHasSubset
shadowβ€”shadow_monotone
shadow_monotone πŸ“–mathematicalβ€”Monotone
Finset
PartialOrder.toPreorder
partialOrder
shadow
β€”sup_mono
shadow_singleton πŸ“–mathematicalβ€”shadow
Finset
instSingleton
instEmptyCollection
β€”sup_singleton
image_singleton
erase_singleton
shadow_singleton_empty πŸ“–mathematicalβ€”shadow
Finset
instSingleton
instEmptyCollection
β€”β€”
sized_shadow_iff πŸ“–mathematicalFinset
instMembership
instEmptyCollection
Set.Sized
SetLike.coe
instSetLike
shadow
β€”nonempty_iff_ne_empty
erase_mem_shadow
card_erase_add_one
Set.Sized.shadow
upShadow_compls πŸ“–mathematicalβ€”upShadow
compls
Finset
booleanAlgebra
shadow
β€”ext
compl_involutive
Equiv.exists_congr_left
compl_compl
Function.Involutive.eq_iff
compl_erase
upShadow_empty πŸ“–mathematicalβ€”upShadow
Finset
instEmptyCollection
β€”β€”
upShadow_monotone πŸ“–mathematicalβ€”Monotone
Finset
PartialOrder.toPreorder
partialOrder
upShadow
β€”sup_mono

FinsetFamily

Definitions

NameCategoryTheorems
Β«termβˆ‚Β» πŸ“–CompOpβ€”
Β«termβˆ‚βΊΒ» πŸ“–CompOpβ€”

Set.Sized

Theorems

NameKindAssumesProvesValidatesDepends On
shadow πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
Finset.instSetLike
Finset.shadowβ€”Finset.mem_shadow_iff
Finset.card_erase_of_mem
shadow_iterate πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
Finset.instSetLike
Nat.iterate
Finset.shadow
β€”Finset.card_sdiff_of_subset
Finset.card_le_card
upShadow πŸ“–mathematicalSet.Sized
SetLike.coe
Finset
Finset.instSetLike
Finset.upShadowβ€”Finset.mem_upShadow_iff
Finset.card_insert_of_notMem

---

← Back to Index