Documentation Verification Report

Acyclic

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Acyclic.lean

Statistics

MetricCount
DefinitionsAcyclic, IsAcyclic, coloringTwo, coloringTwoOfVerts, IsTree, coloringTwo, coloringTwoOfVert
7
Theoremscard_vert_le_card_edgeSet_add_one, exists_connected_induce_compl_singleton_of_finite_nontrivial, exists_isTree_le, exists_isTree_le_of_le_of_isAcyclic, exists_preconnected_induce_compl_singleton_of_finite, induce_compl_singleton_of_degree_eq_one, maximal_le_isAcyclic_iff_isTree, anti, comap, dist_eq_dist_add_one_of_adj_of_reachable, dist_ne_of_adj, embedding, induce, isBipartite, isPath_iff_isChain, isPath_iff_isTrail, isTree_connectedComponent, mem_support_of_ne_mem_support_of_adj_of_isPath, ne_mem_support_of_support_of_adj_of_isPath, of_comap, of_map, of_subsingleton, path_concat, path_unique, subgraph, IsAcyclic, card_edgeFinset, coe_singletonSubgraph, coe_subgraphOfAdj, dist_eq_dist_add_one_of_adj, dist_ne_of_adj, existsUnique_path, exists_vert_degree_one_of_nontrivial, isBipartite, isConnected, minDegree_eq_one_of_nontrivial, of_subsingleton, isAcyclic_iff, isTree_iff, isAcyclic_coe_bot, exists_isAcyclic_reachable_eq_le, exists_isAcyclic_reachable_eq_le_of_le_of_isAcyclic, exists_maximal_isAcyclic_of_le_isAcyclic, isAcyclic_add_edge_iff_of_not_reachable, isAcyclic_bot, isAcyclic_iff_forall_adj_isBridge, isAcyclic_iff_forall_edge_isBridge, isAcyclic_iff_path_unique, isAcyclic_of_path_unique, isAcyclic_sSup_of_isAcyclic_directedOn, isTree_iff, isTree_iff_connected_and_card, isTree_iff_existsUnique_path, isTree_iff_minimal_connected, isTree_of_minimal_connected, maximal_isAcyclic_iff_isTree, maximal_isAcyclic_iff_reachable_eq, reachable_eq_of_maximal_isAcyclic
58
Total65

HomologicalComplex

Definitions

NameCategoryTheorems
Acyclic πŸ“–MathDef
6 mathmath: acyclic_of_isZero, acyclic_truncGE_iff_isSupportedOutside, acyclic_op_iff, HomotopyCategory.quotient_obj_mem_subcategoryAcyclic_iff_acyclic, acyclic_iff, acyclic_truncLE_iff_isSupportedOutside

SimpleGraph

Definitions

NameCategoryTheorems
IsAcyclic πŸ“–MathDef
18 mathmath: isAcyclic_of_path_unique, exists_girth_eq_length, isAcyclic_iff_forall_adj_isBridge, girth_eq_zero, IsAcyclic.of_subsingleton, isTree_iff, exists_egirth_eq_length, Connected.maximal_le_isAcyclic_iff_isTree, Subgraph.isAcyclic_coe_bot, egirth_eq_top, isAcyclic_iff_forall_edge_isBridge, Iso.isAcyclic_iff, maximal_isAcyclic_iff_isTree, isAcyclic_add_edge_iff_of_not_reachable, IsTree.IsAcyclic, isAcyclic_bot, isAcyclic_iff_path_unique, exists_isAcyclic_reachable_eq_le
IsTree πŸ“–CompData
14 mathmath: Connected.exists_isTree_le_of_le_of_isAcyclic, isTree_iff_existsUnique_path, isTree_iff, Iso.isTree_iff, isTree_iff_minimal_connected, IsTree.coe_subgraphOfAdj, Connected.maximal_le_isAcyclic_iff_isTree, isTree_iff_connected_and_card, Connected.exists_isTree_le, IsTree.coe_singletonSubgraph, IsAcyclic.isTree_connectedComponent, IsTree.of_subsingleton, maximal_isAcyclic_iff_isTree, isTree_of_minimal_connected

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isAcyclic_reachable_eq_le πŸ“–mathematicalβ€”SimpleGraph
instLE
IsAcyclic
Reachable
β€”exists_isAcyclic_reachable_eq_le_of_le_of_isAcyclic
bot_le
isAcyclic_bot
exists_isAcyclic_reachable_eq_le_of_le_of_isAcyclic πŸ“–mathematicalSimpleGraph
instLE
IsAcyclic
Reachableβ€”exists_maximal_isAcyclic_of_le_isAcyclic
exists_maximal_isAcyclic_of_le_isAcyclic πŸ“–mathematicalSimpleGraph
instLE
IsAcyclic
Maximalβ€”zorn_le_nonemptyβ‚€
isAcyclic_sSup_of_isAcyclic_directedOn
IsChain.directedOn
instReflLe
CompleteLattice.le_sSup
isAcyclic_add_edge_iff_of_not_reachable πŸ“–mathematicalReachableIsAcyclic
SimpleGraph
instMax
fromEdgeSet
Sym2
Set
Set.instSingletonSet
β€”IsAcyclic.anti
le_sup_left
Reachable.refl
sup_sdiff_right_self
Adj.reachable
isBridge_iff_adj_and_forall_cycle_notMem
edgeSet_sup
edgeSet_fromEdgeSet
Walk.edges_subset_edgeSet
Walk.IsCycle.transfer
isAcyclic_bot πŸ“–mathematicalβ€”IsAcyclic
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Walk.IsCycle.ne_bot
isAcyclic_iff_forall_adj_isBridge πŸ“–mathematicalβ€”IsAcyclic
IsBridge
β€”Walk.IsCycle.not_of_nil
Walk.edges_cons
isAcyclic_iff_forall_edge_isBridge πŸ“–mathematicalβ€”IsAcyclic
IsBridge
β€”β€”
isAcyclic_iff_path_unique πŸ“–mathematicalβ€”IsAcyclicβ€”IsAcyclic.path_unique
isAcyclic_of_path_unique
isAcyclic_of_path_unique πŸ“–mathematicalβ€”IsAcyclicβ€”Adj.symm
Path.singleton.eq_1
Walk.cons.congr_simp
isAcyclic_sSup_of_isAcyclic_directedOn πŸ“–mathematicalIsAcyclic
DirectedOn
SimpleGraph
instLE
SupSet.sSup
supSet
β€”Set.eq_empty_or_nonempty
sSup_empty
Walk.IsCycle.transfer
isTree_iff πŸ“–mathematicalβ€”IsTree
Connected
IsAcyclic
β€”β€”
isTree_iff_connected_and_card πŸ“–mathematicalβ€”IsTree
Connected
Nat.card
Set.Elem
Sym2
edgeSet
β€”IsTree.isConnected
Nat.card_eq_fintype_card
Fintype.card_ofFinset
Set.toFinset_card
IsTree.card_edgeFinset
by_contra
LE.le.not_gt
Connected.card_vert_le_card_edgeSet_add_one
Connected.connected_delete_edge_of_not_isBridge
edgeFinset_card
add_lt_add_iff_right
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Finset.card_lt_card
Set.toFinset_congr
edgeSet_sdiff
edgeSet_fromEdgeSet
edgeSet_sdiff_sdiff_isDiag
Set.toFinset_diff
Set.toFinset_singleton
Finset.coe_sdiff
Set.coe_toFinset
Finset.coe_singleton
isTree_iff_existsUnique_path πŸ“–mathematicalβ€”IsTree
ExistsUnique
Walk
Walk.IsPath
β€”isTree_iff
isAcyclic_iff_path_unique
Connected.nonempty
Connected.preconnected
Walk.reachable
ExistsUnique.unique
isTree_iff_minimal_connected πŸ“–mathematicalβ€”IsTree
Minimal
SimpleGraph
instLE
Connected
β€”IsTree.isConnected
Connected.exists_isPath
Walk.IsPath.mapLe
IsAcyclic.path_unique
IsTree.IsAcyclic
Walk.adj_of_mem_edges
Walk.edges_map
Sym2.map_id
isTree_of_minimal_connected
isTree_of_minimal_connected πŸ“–mathematicalMinimal
SimpleGraph
instLE
Connected
IsTreeβ€”isTree_iff
Minimal.prop
isAcyclic_iff_forall_adj_isBridge
by_contra
Minimal.not_prop_of_lt
edgeSet_sdiff
edgeSet_fromEdgeSet
edgeSet_sdiff_sdiff_isDiag
Connected.connected_delete_edge_of_not_isBridge
maximal_isAcyclic_iff_isTree πŸ“–mathematicalβ€”Maximal
SimpleGraph
instLE
IsAcyclic
IsTree
β€”Connected.maximal_le_isAcyclic_iff_isTree
connected_top
le_top
maximal_isAcyclic_iff_reachable_eq πŸ“–mathematicalSimpleGraph
instLE
IsAcyclic
Maximal
Reachable
β€”reachable_eq_of_maximal_isAcyclic
exists_gt_of_not_maximal
Set.exists_of_ssubset
edgeSet_strict_mono
IsAcyclic.anti
sup_le_iff
fromEdgeSet_edgeSet
sup_sdiff_right_self
isAcyclic_iff_forall_edge_isBridge
edgeSet_sup
edgeSet_fromEdgeSet
not_isDiag_of_mem_edgeSet
Sym2.ind
Reachable.mono
Adj.reachable
reachable_eq_of_maximal_isAcyclic πŸ“–mathematicalMaximal
SimpleGraph
instLE
IsAcyclic
Reachableβ€”Maximal.prop
Maximal.le_of_ge
Reachable.mono
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
ConnectedComponent.connectedComponentMk_mem
ConnectedComponent.reachable_of_mem_supp
Walk.exists_boundary_dart
ConnectedComponent.eq
isAcyclic_add_edge_iff_of_not_reachable
symm
le_sup_left
le_iff_adj
Adj.ne
ConnectedComponent.mem_supp_congr_adj

SimpleGraph.Connected

Theorems

NameKindAssumesProvesValidatesDepends On
card_vert_le_card_edgeSet_add_one πŸ“–mathematicalSimpleGraph.ConnectedNat.card
Set.Elem
Sym2
SimpleGraph.edgeSet
β€”finite_or_infinite
Nat.card_eq_zero_of_infinite
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
exists_isTree_le
Nat.card_eq_fintype_card
Subtype.finite
Quot.finite
Finite.instProd
SimpleGraph.IsTree.card_edgeFinset
add_le_add_iff_right
SimpleGraph.edgeFinset_card
Finset.card_mono
exists_connected_induce_compl_singleton_of_finite_nontrivial πŸ“–mathematicalSimpleGraph.ConnectedSet.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
SimpleGraph.induce
β€”exists_isTree_le
SimpleGraph.IsTree.exists_vert_degree_one_of_nontrivial
mono
induce_compl_singleton_of_degree_eq_one
exists_isTree_le πŸ“–mathematicalSimpleGraph.ConnectedSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsTree
β€”SimpleGraph.exists_isAcyclic_reachable_eq_le_of_le_of_isAcyclic
bot_le
SimpleGraph.isAcyclic_bot
exists_isTree_le_of_le_of_isAcyclic πŸ“–mathematicalSimpleGraph.Connected
SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsAcyclic
SimpleGraph.IsTreeβ€”SimpleGraph.exists_isAcyclic_reachable_eq_le_of_le_of_isAcyclic
exists_preconnected_induce_compl_singleton_of_finite πŸ“–mathematicalSimpleGraph.ConnectedSimpleGraph.Preconnected
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
SimpleGraph.induce
β€”Mathlib.Tactic.Nontriviality.subsingleton_or_nontrivial_elim
Set.subsingleton_coe_of_subsingleton
nonempty
exists_connected_induce_compl_singleton_of_finite_nontrivial
preconnected
induce_compl_singleton_of_degree_eq_one πŸ“–mathematicalSimpleGraph.Connected
SimpleGraph.degree
Set.Elem
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
SimpleGraph.induce
β€”SimpleGraph.degree_eq_one_iff_existsUnique_adj
SimpleGraph.connected_iff
exists_isPath
SimpleGraph.Reachable.eq_1
exists_true_iff_nonempty
Set.mem_compl_iff
Set.mem_singleton_iff
SimpleGraph.Walk.mem_support_iff_exists_append
SimpleGraph.Walk.start_mem_support
List.nodup_iff_forall_not_duplicate
SimpleGraph.Path.nodup_support
SimpleGraph.Walk.support_append
List.duplicate_iff_two_le_count
SimpleGraph.Walk.getVert_mem_support
SimpleGraph.Walk.snd_mem_tail_support
SimpleGraph.Walk.not_nil_of_ne
SimpleGraph.Adj.symm
SimpleGraph.Walk.adj_penultimate
SimpleGraph.Walk.adj_snd
SimpleGraph.Walk.end_mem_support
SetCoe.ext
maximal_le_isAcyclic_iff_isTree πŸ“–mathematicalSimpleGraph.Connected
SimpleGraph
SimpleGraph.instLE
Maximal
SimpleGraph.IsAcyclic
SimpleGraph.IsTree
β€”nonempty
SimpleGraph.reachable_eq_of_maximal_isAcyclic
preconnected
SimpleGraph.maximal_isAcyclic_iff_reachable_eq
SimpleGraph.IsTree.IsAcyclic
SimpleGraph.preconnected_iff_reachable_eq_top
SimpleGraph.IsTree.isConnected

SimpleGraph.IsAcyclic

Definitions

NameCategoryTheorems
coloringTwo πŸ“–CompOpβ€”
coloringTwoOfVerts πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
anti πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsAcyclic
β€”β€”comap
comap πŸ“–β€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.IsAcyclic
β€”β€”Iff.not
SimpleGraph.Walk.map_isCycle_iff_of_injective
dist_eq_dist_add_one_of_adj_of_reachable πŸ“–mathematicalSimpleGraph.IsAcyclic
SimpleGraph.Adj
SimpleGraph.distβ€”β€”
dist_ne_of_adj πŸ“–β€”SimpleGraph.IsAcyclic
SimpleGraph.Adj
β€”β€”SimpleGraph.Reachable.exists_path_of_dist
SimpleGraph.Reachable.trans
SimpleGraph.Adj.reachable
SimpleGraph.Adj.symm
path_concat
SimpleGraph.Walk.length_concat
mem_support_of_ne_mem_support_of_adj_of_isPath
embedding πŸ“–β€”SimpleGraph.IsAcyclicβ€”β€”comap
RelEmbedding.injective
induce πŸ“–mathematicalSimpleGraph.IsAcyclicSet.Elem
SimpleGraph.induce
β€”of_comap
isBipartite πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.IsBipartiteβ€”β€”
isPath_iff_isChain πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.Walk.IsPath
Sym2
SimpleGraph.Walk.edges
β€”SimpleGraph.Walk.edges_nodup_of_support_nodup
SimpleGraph.Walk.isPath_def
List.isChain_cons
SimpleGraph.Walk.edges_cons
SimpleGraph.Walk.cons_isPath_iff
SimpleGraph.Walk.nil_iff_support_eq
SimpleGraph.Walk.nil_iff_length_eq
SimpleGraph.Adj.ne
SimpleGraph.Walk.take_spec
SimpleGraph.Walk.adj_snd
SimpleGraph.Walk.cons_tail_eq
SimpleGraph.Walk.IsPath.eq_snd_of_mem_edges
SimpleGraph.Walk.IsPath.mk'
Sym2.eq_swap
SimpleGraph.Walk.snd_takeUntil
isPath_iff_isTrail πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.Walk.IsPath
SimpleGraph.Walk.IsTrail
β€”SimpleGraph.Walk.IsPath.isTrail
isPath_iff_isChain
SimpleGraph.Walk.isTrail_def
isTree_connectedComponent πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.IsTree
SimpleGraph.ConnectedComponent
SetLike.instMembership
SimpleGraph.ConnectedComponent.instSetLike
SimpleGraph.ConnectedComponent.toSimpleGraph
β€”SimpleGraph.ConnectedComponent.connected_toSimpleGraph
comap
mem_support_of_ne_mem_support_of_adj_of_isPath πŸ“–β€”SimpleGraph.IsAcyclic
SimpleGraph.Walk.IsPath
SimpleGraph.Adj
SimpleGraph.Walk.support
β€”β€”SimpleGraph.Adj.symm
SimpleGraph.Walk.IsPath.concat
SimpleGraph.isAcyclic_iff_path_unique
SimpleGraph.Walk.support_subset_support_concat
SimpleGraph.Walk.end_mem_support
ne_mem_support_of_support_of_adj_of_isPath πŸ“–β€”SimpleGraph.IsAcyclic
SimpleGraph.Walk.IsPath
SimpleGraph.Adj
SimpleGraph.Walk.support
β€”β€”SimpleGraph.Walk.IsPath.mem_support_iff_exists_append
path_unique
SimpleGraph.Walk.IsPath.ne_of_mem_support_of_append
SimpleGraph.Adj.ne'
SimpleGraph.Adj.symm
SimpleGraph.Walk.end_mem_support
of_comap πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”embedding
of_map πŸ“–β€”SimpleGraph.IsAcyclic
SimpleGraph.map
β€”β€”embedding
of_subsingleton πŸ“–mathematicalβ€”SimpleGraph.IsAcyclicβ€”SimpleGraph.Walk.IsCircuit.ne_nil
SimpleGraph.Walk.IsCycle.isCircuit
SimpleGraph.irrefl
path_concat πŸ“–mathematicalSimpleGraph.IsAcyclic
SimpleGraph.Walk.IsPath
SimpleGraph.Adj
SimpleGraph.Walk.support
SimpleGraph.Walk.concatβ€”ne_mem_support_of_support_of_adj_of_isPath
SimpleGraph.Adj.symm
SimpleGraph.Walk.IsPath.concat
SimpleGraph.isAcyclic_iff_path_unique
path_unique πŸ“–β€”SimpleGraph.IsAcyclicβ€”β€”SimpleGraph.Walk.isPath_iff_eq_nil
SimpleGraph.isBridge_iff_adj_and_forall_walk_mem_edges
SimpleGraph.isAcyclic_iff_forall_adj_isBridge
SimpleGraph.Walk.edges_append
SimpleGraph.Walk.edges_reverse
SimpleGraph.Walk.cons_isPath_iff
SimpleGraph.Walk.fst_mem_support_of_mem_edges
subgraph πŸ“–mathematicalSimpleGraph.IsAcyclicSet.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
β€”comap
SimpleGraph.Subgraph.hom_injective

SimpleGraph.IsTree

Definitions

NameCategoryTheorems
coloringTwo πŸ“–CompOpβ€”
coloringTwoOfVert πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
IsAcyclic πŸ“–mathematicalSimpleGraph.IsTreeSimpleGraph.IsAcyclicβ€”β€”
card_edgeFinset πŸ“–mathematicalSimpleGraph.IsTreeFinset.card
Sym2
SimpleGraph.edgeFinset
Fintype.card
β€”SimpleGraph.Connected.nonempty
isConnected
Finset.card_compl
Finset.card_singleton
Fintype.card_pos
AddRightCancelSemigroup.toIsRightCancelAdd
Finset.card_bij
SimpleGraph.Walk.not_nil_of_ne
SimpleGraph.dart_edge_eq_iff
SimpleGraph.Walk.IsPath.tail
SimpleGraph.Walk.length_tail_add_one
SimpleGraph.Walk.length_copy
le_of_not_ge
zero_add
Nat.instCanonicallyOrderedAdd
SimpleGraph.Walk.length_nil
SimpleGraph.Walk.length_cons
SimpleGraph.Walk.IsPath.cons
SimpleGraph.Walk.IsPath.nil
SimpleGraph.Adj.ne
SimpleGraph.dart_edge_eq_mk'_iff
SimpleGraph.Adj.symm
SimpleGraph.Walk.cons_isPath_iff
ExistsUnique.unique
existsUnique_path
SimpleGraph.Walk.IsPath.takeUntil
SimpleGraph.Walk.IsPath.dropUntil
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
SimpleGraph.Walk.take_spec
SimpleGraph.Walk.getVert_zero
Sym2.eq_swap
coe_singletonSubgraph πŸ“–mathematicalβ€”SimpleGraph.IsTree
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.singletonSubgraph
SimpleGraph.Subgraph.coe
β€”of_subsingleton
SimpleGraph.nonempty_singletonSubgraph_verts
Unique.instSubsingleton
coe_subgraphOfAdj πŸ“–mathematicalSimpleGraph.AdjSimpleGraph.IsTree
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.subgraphOfAdj
SimpleGraph.Subgraph.coe
β€”SimpleGraph.Subgraph.Connected.coe
SimpleGraph.Subgraph.subgraphOfAdj_connected
SimpleGraph.Walk.adj_snd
Iff.not
SimpleGraph.Walk.nil_iff_eq_nil
SimpleGraph.Walk.IsCircuit.ne_nil
SimpleGraph.Walk.IsCycle.isCircuit
SimpleGraph.Walk.adj_penultimate
dist_eq_dist_add_one_of_adj πŸ“–mathematicalSimpleGraph.IsTree
SimpleGraph.Adj
SimpleGraph.distβ€”β€”
dist_ne_of_adj πŸ“–β€”SimpleGraph.IsTree
SimpleGraph.Adj
β€”β€”SimpleGraph.IsAcyclic.dist_ne_of_adj
IsAcyclic
SimpleGraph.Connected.preconnected
isConnected
existsUnique_path πŸ“–mathematicalSimpleGraph.IsTreeExistsUnique
SimpleGraph.Walk
SimpleGraph.Walk.IsPath
β€”SimpleGraph.isTree_iff_existsUnique_path
exists_vert_degree_one_of_nontrivial πŸ“–mathematicalSimpleGraph.IsTreeSimpleGraph.degree
SimpleGraph.neighborSetFintype
β€”SimpleGraph.exists_minimal_degree_vertex
Nontrivial.to_nonempty
minDegree_eq_one_of_nontrivial
isBipartite πŸ“–mathematicalSimpleGraph.IsTreeSimpleGraph.IsBipartiteβ€”β€”
isConnected πŸ“–mathematicalSimpleGraph.IsTreeSimpleGraph.Connectedβ€”β€”
minDegree_eq_one_of_nontrivial πŸ“–mathematicalSimpleGraph.IsTreeSimpleGraph.minDegreeβ€”card_edgeFinset
SimpleGraph.sum_degrees_eq_twice_card_edges
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_trans
SimpleGraph.minDegree_le_degree
smul_eq_mul
Finset.card_univ
Finset.sum_const
SimpleGraph.Preconnected.minDegree_pos_of_nontrivial
SimpleGraph.Connected.preconnected
isConnected
of_subsingleton πŸ“–mathematicalβ€”SimpleGraph.IsTreeβ€”SimpleGraph.Connected.of_subsingleton
SimpleGraph.IsAcyclic.of_subsingleton

SimpleGraph.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
isAcyclic_iff πŸ“–mathematicalβ€”SimpleGraph.IsAcyclicβ€”SimpleGraph.IsAcyclic.embedding
isTree_iff πŸ“–mathematicalβ€”SimpleGraph.IsTreeβ€”connected_iff
isAcyclic_iff

SimpleGraph.Subgraph

Theorems

NameKindAssumesProvesValidatesDepends On
isAcyclic_coe_bot πŸ“–mathematicalβ€”SimpleGraph.IsAcyclic
Set.Elem
verts
Bot.bot
SimpleGraph.Subgraph
instBot
coe
β€”SimpleGraph.IsAcyclic.of_subsingleton
IsEmpty.instSubsingleton
Set.isEmpty_coe_sort

---

← Back to Index