Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Basic.lean

Statistics

MetricCount
DefinitionsSimpleGraph, adjDecidable, adjDecidable, adjDecidable, IsCompleteBetween, IsSubgraph, adjDecidable, adjDecidable, adjDecidable, commonNeighbors, completeAtomicBooleanAlgebra, completeGraph, decidableMemCommonNeighbors, decidableMemEdgeSet, decidableMemIncidenceSet, distribLattice, edgeSet, edgeSetEmbedding, emptyGraph, fintypeEdgeSet, fintypeEdgeSetBot, fintypeEdgeSetInf, fintypeEdgeSetSdiff, fintypeEdgeSetSup, fromEdgeSet, fromRel, incidenceSet, incidenceSetEquivNeighborSet, infSet, instCompl, instDecidableRelAdjFromEdgeSetOfDecidablePredSym2MemSetOfDecidableEq, instFintypeElemSym2EdgeSetFromEdgeSetOfDecidableEq, instInhabited, instLE, instMax, instMin, instPartialOrder, mk', neighborSet, memDecidable, otherVertexOfIncident, sdiff, supSet, support, uniqueOfSubsingleton, aesop_graph, aesop_graph?, aesop_graph_nonterminal, completeBipartiteGraph, instDecidableRelAdjFromRelOfDecidableEq, instFintypeSimpleGraphOfDecidableEq
51
Theoremsne, ne', disjoint, adj_comm, adj_congr_of_sym2, adj_iff_exists_edge, adj_iff_exists_edge_coe, adj_incidenceSet_inter, adj_inj, adj_injective, adj_of_mem_incidenceSet, adj_symm, bot_adj, card_neighborSet_union_compl_neighborSet, commonNeighbors_eq, commonNeighbors_subset_neighborSet_left, commonNeighbors_subset_neighborSet_right, commonNeighbors_symm, commonNeighbors_top_eq, compl_adj, compl_neighborSet_disjoint, completeGraph_eq_top, default_def, disjoint_edgeSet, disjoint_fromEdgeSet, disjoint_left, edgeSet_bot, edgeSet_eq_empty, edgeSet_eq_iff, edgeSet_fromEdgeSet, edgeSet_inf, edgeSet_inj, edgeSet_injective, edgeSet_mono, edgeSet_nonempty, edgeSet_sdiff, edgeSet_sdiff_sdiff_isDiag, edgeSet_ssubset_edgeSet, edgeSet_strict_mono, edgeSet_subset_compl_diagSet, edgeSet_subset_edgeSet, edgeSet_subset_setOf_not_isDiag, edgeSet_sup, edgeSet_top, edge_mem_incidenceSet_iff, edge_other_incident_set, edge_other_ne, emptyGraph_eq_bot, eq_bot_iff_forall_not_adj, eq_top_iff_forall_ne_adj, ext, ext_iff, fromEdgeSet_adj, fromEdgeSet_disjoint, fromEdgeSet_edgeSet, fromEdgeSet_empty, fromEdgeSet_inter, fromEdgeSet_le, fromEdgeSet_mono, fromEdgeSet_not_isDiag, fromEdgeSet_sdiff, fromEdgeSet_union, fromEdgeSet_univ, fromRel_adj, iInf_adj, iInf_adj_of_nonempty, iSup_adj, incidenceSetEquivNeighborSet_apply_coe, incidenceSetEquivNeighborSet_symm_apply_coe, incidenceSet_inter_incidenceSet_of_adj, incidenceSet_inter_incidenceSet_of_not_adj, incidenceSet_inter_incidenceSet_subset, incidenceSet_subset, incidence_other_neighbor_edge, incidence_other_prop, inf_adj, instFinite, instNontrivial, irrefl, isCompleteBetween_comm, isSubgraph_eq_le, le_iff_adj, loopless, mem_commonNeighbors, mem_edgeSet, mem_incidenceSet, mem_incidence_iff_neighbor, mem_neighborSet, mem_support, mk'_apply_adj, mk'_mem_incidenceSet_iff, mk'_mem_incidenceSet_left_iff, mk'_mem_incidenceSet_right_iff, ne_bot_iff_exists_adj, ne_of_adj, ne_of_adj_of_not_adj, ne_top_iff_exists_not_adj, neighborSet_compl, neighborSet_subset_support, neighborSet_union_compl_neighborSet_eq, nontrivial_iff, notMem_commonNeighbors_left, notMem_commonNeighbors_right, notMem_neighborSet_self, not_isDiag_of_mem_edgeSet, not_mem_edgeSet_of_isDiag, sInf_adj, sInf_adj_of_nonempty, sSup_adj, sdiff_adj, subsingleton_iff, sup_adj, support_bot, support_eq_bot_iff, support_mono, support_of_subsingleton, support_top_of_nontrivial, symm_adj, top_adj, not_mem_edgeSet, completeBipartiteGraph_adj
121
Total172

SimpleGraph

Definitions

NameCategoryTheorems
IsCompleteBetween πŸ“–MathDef
2 mathmath: completeBipartiteGraph_isContained_iff, isCompleteBetween_comm
IsSubgraph πŸ“–MathDef
1 mathmath: isSubgraph_eq_le
commonNeighbors πŸ“–CompOp
19 mathmath: walkLengthTwoEquivCommonNeighbors_symm_apply_coe, card_commonNeighbors_le_degree_left, IsSRGWith.card_neighborFinset_union_eq, Adj.card_commonNeighbors_lt_degree, mem_commonNeighbors, notMem_commonNeighbors_left, card_commonNeighbors_le_degree_right, commonNeighbors_eq, commonNeighbors_symm, commonNeighbors_subset_neighborSet_right, card_commonNeighbors_lt_card_verts, IsSRGWith.of_adj, IsSRGWith.card_commonNeighbors_eq_of_adj_compl, card_commonNeighbors_top, commonNeighbors_top_eq, walkLengthTwoEquivCommonNeighbors_apply_coe, IsSRGWith.card_commonNeighbors_eq_of_not_adj_compl, notMem_commonNeighbors_right, commonNeighbors_subset_neighborSet_left
completeAtomicBooleanAlgebra πŸ“–CompOp
140 mathmath: locallyLinear_bot, cliqueSet_bot, killCopies_bot, TopEdgeLabeling.labelGraph_adj, cliqueFree_two, eccent_bot, copyCount_bot, turanGraph_eq_top, bot_not_connected, isExtremal_top_free_iff_isTuranMaximal, toTopEdgeLabeling_labelGraph_compl, edgeFinset_top, isClique_iff_induce_eq, bot_not_preconnected, Copy.topEmbedding_apply, UnitDistEmbedding.bot_p, cycleGraph_one_eq_bot, edgeDisjointTriangles_bot, emptyGraph_eq_bot, chromaticNumber_top, center_bot, edgeSet_top, completeMultipartiteGraph.topEmbedding_apply_fst, deleteEdges_univ, girth_bot, support_top_of_nontrivial, neighborFinset_completeEquipartiteGraph, toTopEdgeLabeling_get, cycleGraph_two_eq_top, IsSRGWith.top, degree_completeEquipartiteGraph, free_bot, edist_top, cycleGraph_three_eq_top, disjoint_edge, edgeSet_bot, disjoint_edgeFinset, edge_self_eq_bot, cliqueFree_bot, Digraph.toSimpleGraphStrict_top, Subgraph.spanningCoe_bot, disjoint_edgeSet, preconnected_top, fromEdgeSet_not_isDiag, ConnectedComponent.top_supp_eq_univ, preconnected_bot, chromaticNumber_eq_card_iff, egirth_bot, support_eq_bot_iff, EdgeLabeling.pairwise_disjoint_labelGraph, extremalNumber_top, isVertexCover_bot, dist_top_of_ne, top_adj, maxDegree_bot_eq_zero, card_edgeFinset_top_eq_card_choose_two, fromEdgeSet_univ, vertexCoverNum_eq_zero, isExtremal_top_free_turanGraph, ediam_top, not_connected_bot, default_def, Digraph.toSimpleGraphInclusive_bot, top_isIndContained_iff_top_isContained, ediam_eq_one, diam_eq_one, toTopEdgeLabeling_labelGraph, IsContained.bot, edist_bot, bot_isContained_iff_card_le, dist_bot, EdgeLabeling.pairwiseDisjoint_univ_labelGraph, diam_bot, nonempty_dart_top, turanGraph_zero, fromEdgeSet_disjoint, support_bot, fromEdgeSet_empty, connected_bot_iff, induce_singleton_eq_top, pathGraph_two_eq_top, cycleGraph_one_eq_top, lineGraph_bot, reachable_bot, isNClique_map_copy_top, bot_preconnected_iff_subsingleton, bot_adj, isClique_bot_iff, diam_top, isClique_range_copy_top, eq_bot_iff_forall_not_adj, edgeFinset_bot, eq_top_iff_forall_eccent_eq_one, TopEdgeLabeling.labelGraph_toTopEdgeLabeling, completeGraph_eq_top, center_top, completeEquipartiteGraph_eq_bot_iff, disjoint_left, not_isHamiltonian_bot_of_card_ne_one, completeMultipartiteGraph.topEmbedding_apply_snd, chromaticNumber_top_eq_top_of_infinite, top_preconnected, card_commonNeighbors_top, eq_top_iff_forall_ne_adj, edgeFinset_eq_empty, Digraph.toSimpleGraphInclusive_top, disjoint_fromEdgeSet, bot_degree, bot_isCompleteMultipartite, radius_top, Digraph.toSimpleGraphStrict_bot, commonNeighbors_top_eq, minDegree_bot_eq_zero, preconnected_bot_iff_subsingleton, card_edgeFinset_completeEquipartiteGraph, radius_bot, eq_top_of_chromaticNumber_eq_card, edgeSet_eq_empty, not_preconnected_bot, killCopies_def, IsRegularOfDegree.top, isAcyclic_bot, Hom.injective_of_top_hom, isNClique_bot_iff, bot_preconnected, ediam_bot, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, edist_top_of_ne, cliqueFree_iff_top_free, cycleGraph_zero_eq_bot, chromaticNumber_eq_one_iff, bot_strongly_regular, card_topEdgeLabeling, cycleGraph_zero_eq_top, isVertexCover_empty, edist_bot_of_ne, dist_top, eccent_top, chromaticNumber_bot, Subgraph.coe_bot
completeGraph πŸ“–CompOp
27 mathmath: connected_top, Coloring.mem_colorClass, card_le_chromaticNumber_iff_forall_surjective, vertexCoverNum_top, cliqueFree_iff, le_chromaticNumber_iff_forall_surjective, top_connected, connected_top_iff, Coloring.injective_comp_of_pairwise_adj, colorable_iff_exists_bdd_nat_coloring, coe_recolorOfEmbedding, coe_recolorOfEquiv, complete_graph_degree, not_cliqueFree_iff, completeGraph_eq_top, Coloring.surjOn_of_card_le_isClique, Embedding.coe_completeGraph, Coloring.odd_length_iff_not_congr, reachable_top, Iso.toEmbedding_completeGraph, chromaticNumber_eq_iff_forall_surjective, Coloring.mem_colorClasses, induce_top, coe_recolorOfCardLE, Coloring.even_length_iff_congr, comap_top, chromaticNumber_eq_card_iff_forall_surjective
decidableMemCommonNeighbors πŸ“–CompOp
9 mathmath: card_commonNeighbors_le_degree_left, IsSRGWith.card_neighborFinset_union_eq, Adj.card_commonNeighbors_lt_degree, card_commonNeighbors_le_degree_right, card_commonNeighbors_lt_card_verts, IsSRGWith.of_adj, IsSRGWith.card_commonNeighbors_eq_of_adj_compl, card_commonNeighbors_top, IsSRGWith.card_commonNeighbors_eq_of_not_adj_compl
decidableMemEdgeSet πŸ“–CompOpβ€”
decidableMemIncidenceSet πŸ“–CompOp
1 mathmath: incMatrix_apply'
distribLattice πŸ“–CompOpβ€”
edgeSet πŸ“–CompOp
73 mathmath: not_mem_edgeSet_of_isDiag, edgeSet_fromEdgeSet, fromEdgeSet_edgeSet, adj_iff_exists_edge_coe, deleteEdges_edgeSet, Walk.IsEulerian.edgeSet_eq, Subgraph.image_coe_edgeSet_coe, coe_edgeFinset, edgeSet_top, edgeSet_ssubset_edgeSet, edgeSet_replaceVertex_of_adj, Embedding.map_mem_edgeSet_iff, edge_edgeSet_of_ne, edgeSet_eq_iff, edgeSet_bot, edgeSet_inf, edgeSet_subset_edgeSet, Subgraph.edgeSet_top, Subgraph.edgeSet_iInf, disjoint_edgeSet, Iso.map_mem_edgeSet_iff, edgeSet_deleteIncidenceSet, Hom.mapEdgeSet_coe, isTree_iff_connected_and_card, vertexCoverNum_le_encard_edgeSet, edge_mem_incidenceSet_iff, edgeSet_nonempty, Hom.mapEdgeSet.injective, Subgraph.edgeSet_sInf, edgeSet_sdiff_sdiff_isDiag, Connected.card_vert_le_card_edgeSet_add_one, fromEdgeSet_le, edgeSet_fromEdgeSet_incidenceSet, edgeSet_inj, edgeSet_strict_mono, fromEdgeSet_disjoint, Subgraph.edgeSet_subset, lineGraph_bot, deleteEdges_eq_inter_edgeSet, edgeSet_mono, mem_edgeFinset, incMatrix_transpose_mul_diag, Dart.edge_mem, edgeSet_subset_setOf_not_isDiag, EdgeLabeling.get_eq, Subgraph.edgeSet_coe, edgeSet_map, Sym2.IsDiag.not_mem_edgeSet, disjoint_fromEdgeSet, lineGraph_adj_iff_exists, edgeSet_univ_card, edgeSet_sup, Embedding.mapEdgeSet_apply, Walk.IsEulerian.mem_edges_iff, Iso.mapEdgeSet_apply, edgeSet_replaceVertex_of_not_adj, edgeSet_eq_empty, edgeSet_deleteEdges, Walk.IsTrail.isEulerian_iff, card_edgeSet, edgeSet_injective, edgeSet_sdiff, edgeSet_subset_compl_diagSet, mem_edgeSet, Walk.edges_subset_edgeSet, deleteEdges_sdiff_eq_of_le, deleteEdges_eq_self, adj_iff_exists_edge, incidenceSet_subset, EdgeLabeling.labelGraph_adj, isBridge_iff_mem_and_forall_cycle_notMem, edgeFinset_card, Iso.mapEdgeSet_symm_apply
edgeSetEmbedding πŸ“–CompOpβ€”
emptyGraph πŸ“–CompOp
3 mathmath: emptyGraph_eq_bot, comap_bot, vertexCoverNum_bot
fintypeEdgeSet πŸ“–CompOp
52 mathmath: deleteFar_iff, EdgeDisjointTriangles.card_edgeFinset_le, edgeFinset_subset_sym2_of_support_subset, DeleteFar.le_card_sub_card, two_mul_card_edgeFinset, sum_degrees_eq_twice_card_edges, card_edgeFinset_sup_edge, edgeFinset_top, map_edgeFinset_induce_of_support_subset, extremalNumber_le_iff_of_nonneg, card_edgeFinset_map, farFromTriangleFree_iff, edgeFinset_deleteIncidenceSet_eq_sdiff, isBipartiteWith_sum_degrees_eq_card_edges, edgeFinset_map, card_edgeFinset_of_isExtremal_free, isBipartiteWith_sum_degrees_eq_card_edges', edgeFinset_replaceVertex_of_adj, LocallyLinear.card_edgeFinset, card_edgeFinset_le_extremalNumber, farFromTriangleFree.le_card_sub_card, isExtremal_free_iff, card_edgeFinset_turanGraph_add, edgeFinset_replaceVertex_of_not_adj, extremalNumber_top, card_edgeFinset_deleteIncidenceSet_le_extremalNumber, card_edgeFinset_top_eq_card_choose_two, dart_card_eq_twice_card_edges, extremalNumber_of_fintypeCard_eq, edgeFinset_deleteIncidenceSet_eq_filter, card_edgeFinset_replaceVertex_of_not_adj, card_edgeFinset_replaceVertex_of_adj, sum_degrees_support_eq_twice_card_edges, extremalNumber_le_iff, card_edgeFinset_deleteIncidenceSet, lt_extremalNumber_iff, lt_extremalNumber_iff_of_nonneg, disjoint_sdiff_neighborFinset_image, regularityReduced_edges_card_aux, triangle_removal, card_edgeFinset_turanGraph, card_edgeFinset_induce_support, card_edgeFinset_completeEquipartiteGraph, edgeFinset_sup_edge, CliqueFree.card_edgeFinset_le, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, card_edgeFinset_induce_of_support_subset, map_edgeFinset_induce, card_topEdgeLabeling, mul_card_edgeFinset_turanGraph_le, isBipartiteWith_sum_degrees_eq_twice_card_edges, card_edgeFinset_induce_compl_singleton
fintypeEdgeSetBot πŸ“–CompOp
1 mathmath: edgeFinset_bot
fintypeEdgeSetInf πŸ“–CompOp
1 mathmath: edgeFinset_inf
fintypeEdgeSetSdiff πŸ“–CompOp
1 mathmath: edgeFinset_sdiff
fintypeEdgeSetSup πŸ“–CompOpβ€”
fromEdgeSet πŸ“–CompOp
23 mathmath: fromEdgeSet_mono, fromEdgeSet_inter, edgeSet_fromEdgeSet, fromEdgeSet_edgeSet, Subgraph.spanningCoe_subgraphOfAdj, deleteEdges_fromEdgeSet, reachable_delete_edges_iff_exists_walk, edgeSet_eq_iff, adj_and_reachable_delete_edges_iff_exists_cycle, fromEdgeSet_not_isDiag, fromEdgeSet_adj, reachable_fromEdgeSet_eq_reflTransGen_toRel, fromEdgeSet_sdiff, fromEdgeSet_univ, fromEdgeSet_le, edgeSet_fromEdgeSet_incidenceSet, isBridge_iff, fromEdgeSet_disjoint, fromEdgeSet_empty, isAcyclic_add_edge_iff_of_not_reachable, disjoint_fromEdgeSet, fromEdgeSet_union, reachable_fromEdgeSet_fromRel_eq_reflTransGen
fromRel πŸ“–CompOp
1 mathmath: fromRel_adj
incidenceSet πŸ“–CompOp
27 mathmath: mem_incidenceSet, incidenceSetEquivNeighborSet_apply_coe, incidenceSet_inter_incidenceSet_of_adj, incMatrix_apply_mul_incMatrix_apply, incidenceSet_inter_incidenceSet_of_not_adj, adj_incidenceSet_inter, card_incidenceSet_eq_degree, mem_incidenceFinset, edgeSet_replaceVertex_of_adj, incMatrix_apply', edgeSet_deleteIncidenceSet, edge_mem_incidenceSet_iff, incidenceSetEquivNeighborSet_symm_apply_coe, incMatrix_apply_eq_one_iff, mem_incidence_iff_neighbor, incidenceSet_inter_incidenceSet_subset, edgeSet_fromEdgeSet_incidenceSet, coe_incidenceFinset, Subgraph.incidenceSet_subset_incidenceSet, mk'_mem_incidenceSet_left_iff, edgeSet_replaceVertex_of_not_adj, mk'_mem_incidenceSet_iff, incMatrix_apply, incidence_other_neighbor_edge, incidenceSet_subset, mk'_mem_incidenceSet_right_iff, incMatrix_apply_eq_zero_iff
incidenceSetEquivNeighborSet πŸ“–CompOp
2 mathmath: incidenceSetEquivNeighborSet_apply_coe, incidenceSetEquivNeighborSet_symm_apply_coe
infSet πŸ“–CompOp
4 mathmath: sInf_adj, iInf_adj, iInf_adj_of_nonempty, sInf_adj_of_nonempty
instCompl πŸ“–CompOp
33 mathmath: isNClique_compl, toTopEdgeLabeling_labelGraph_compl, card_interedges_add_card_interedges_compl, cliqueNum_compl, reachable_or_reachable_compl, IsRegularOfDegree.compl, neighborFinset_compl, isMaximalIndepSet_compl, neighborSet_union_compl_neighborSet_eq, neighborSet_compl, compl_isIndContained_compl, connected_or_connected_compl, IsSRGWith.matrix_eq, isIndepSet_compl, compl_adj, compl_neighborSet_disjoint, Matrix.IsAdjMatrix.toGraph_compl_eq, IsSRGWith.compl_is_regular, isMaximalClique_compl, IsIndContained.compl, isClique_compl, isNIndepSet_compl, degree_compl, isMaximumClique_compl, IsSRGWith.compl, connected_or_preconnected_compl, reachable_or_compl_adj, edgeDensity_add_edgeDensity_compl, card_neighborSet_union_compl_neighborSet, indepSetFree_compl, isMaximumIndepSet_compl, cliqueFree_compl, indepNum_compl
instDecidableRelAdjFromEdgeSetOfDecidablePredSym2MemSetOfDecidableEq πŸ“–CompOpβ€”
instFintypeElemSym2EdgeSetFromEdgeSetOfDecidableEq πŸ“–CompOpβ€”
instInhabited πŸ“–CompOp
1 mathmath: default_def
instLE πŸ“–CompOp
35 mathmath: fromEdgeSet_mono, deleteIncidenceSet_le, IsExtremal.le_iff_eq, killCopies_le_left, map_le_of_subsingleton, isTree_iff_minimal_connected, between_le, EdgeLabeling.labelGraph_le, regularityReduced_mono, Subgraph.spanningCoe_le, edgeSet_subset_edgeSet, exists_maximal_isMatchingFree, le_iff_adj, spanningCoe_induce_le, Connected.exists_isTree_le, Subgraph.coe_deleteEdges_le, deleteEdges_anti, fromEdgeSet_le, le_comap_of_subsingleton, Subgraph.spanningCoe_sup_edge_le, regularityReduced_le, maximal_isAcyclic_iff_isTree, Subgraph.spanningCoe_deleteEdges_le, isSubgraph_eq_le, edgeFinset_subset_edgeFinset, regularityReduced_anti, triangle_removal, pathGraph_le_cycleGraph, Subgraph.spanningCoe_le_of_le, edge_le_iff, map_le_iff_le_comap, map_comap_le, exists_isAcyclic_reachable_eq_le, Digraph.toSimpleGraphStrict_subgraph_toSimpleGraphInclusive, deleteEdges_le
instMax πŸ“–CompOp
24 mathmath: card_edgeFinset_sup_edge, sup_edge_self, CliqueFree.sup_edge, lt_sup_edge, Subgraph.IsPerfectMatching.isAlternating_symmDiff_left, sup_adj, Reachable.sum_sup_edge, edgeFinset_sup, isClique_sup_edge_of_ne_sdiff, deleteEdges_sup, Subgraph.IsPerfectMatching.symmDiff_isCycles, Walk.IsPath.isCycles_spanningCoe_toSubgraph_sup_edge, Subgraph.IsPerfectMatching.symmDiff_of_isAlternating, isAcyclic_add_edge_iff_of_not_reachable, Subgraph.sup_spanningCoe, Preconnected.sum_sup_edge, isClique_sup_edge_of_ne_iff, sup_edge_of_adj, edgeFinset_sup_edge, edgeSet_sup, fromEdgeSet_union, IsAlternating.sup_edge, Subgraph.IsPerfectMatching.isAlternating_symmDiff_right, Connected.sum_sup_edge
instMin πŸ“–CompOp
4 mathmath: fromEdgeSet_inter, edgeSet_inf, edgeFinset_inf, inf_adj
instPartialOrder πŸ“–CompOp
18 mathmath: lt_sup_edge, edgeSet_ssubset_edgeSet, disjoint_edge, disjoint_edgeFinset, disjoint_edgeSet, Digraph.toSimpleGraphStrict_mono, EdgeLabeling.pairwise_disjoint_labelGraph, EdgeLabeling.pairwiseDisjoint_univ_labelGraph, fromEdgeSet_disjoint, map_monotone, Digraph.toSimpleGraphInclusive_mono, disjoint_left, egirth_anti, disjoint_fromEdgeSet, Copy.ofLE_refl, Copy.ofLE_comp, comap_monotone, edgeFinset_ssubset_edgeFinset
mk' πŸ“–CompOp
1 mathmath: mk'_apply_adj
neighborSet πŸ“–CompOp
47 mathmath: incidenceSetEquivNeighborSet_apply_coe, isBipartiteWith_neighborSet_disjoint, Subgraph.neighborSet_iInf, Embedding.apply_mem_neighborSet_iff, neighborSet_subset_between_union, card_neighborSet_eq_degree, Embedding.mapNeighborSet_apply_coe, notMem_neighborSet_self, edgeSet_replaceVertex_of_adj, neighborSet_union_compl_neighborSet_eq, neighborSet_compl, Iso.apply_mem_neighborSet_iff, degree_pos_iff_nonempty, incidenceSetEquivNeighborSet_symm_apply_coe, mem_neighborSet, commonNeighbors_eq, neighborSet_subset_between_union_compl, incidence_other_prop, mem_incidence_iff_neighbor, CliqueFreeOn.of_succ, dartOfNeighborSet_injective, compl_neighborSet_disjoint, dart_fst_fiber, Iso.mapNeighborSet_apply_coe, commonNeighbors_subset_neighborSet_right, isBipartiteWith_neighborSet_disjoint', Subgraph.neighborSet_top, isBipartiteWith_neighborSet', Subgraph.neighborSet_eq_of_equiv, Hom.mapNeighborSet_coe, isBipartiteWith_neighborSet, isBipartiteWith_neighborSet_subset', neighborSet_boxProd, dartOfNeighborSet_toProd, Iso.mapNeighborSet_symm_apply_coe, neighborSet_subset_support, cycleGraph_neighborSet, Subgraph.neighborSet_sInf, edgeSet_replaceVertex_of_not_adj, isIndepSet_neighborSet_of_triangleFree, card_neighborSet_union_compl_neighborSet, coe_neighborFinset, neighborSet_completeEquipartiteGraph, neighborFinset_def, isBipartiteWith_neighborSet_subset, Subgraph.neighborSet_subset, commonNeighbors_subset_neighborSet_left
otherVertexOfIncident πŸ“–CompOp
4 mathmath: incidenceSetEquivNeighborSet_apply_coe, incidence_other_prop, edge_other_incident_set, incidence_other_neighbor_edge
sdiff πŸ“–CompOp
14 mathmath: edgeFinset_sdiff, deleteEdges_edgeSet, IsCycles.reachable_sdiff_toSubgraph_spanningCoe, Subgraph.IsPerfectMatching.isAlternating_symmDiff_left, reachable_delete_edges_iff_exists_walk, adj_and_reachable_delete_edges_iff_exists_cycle, fromEdgeSet_sdiff, isBridge_iff, Subgraph.IsPerfectMatching.symmDiff_isCycles, sdiff_adj, Subgraph.IsPerfectMatching.symmDiff_of_isAlternating, sdiff_edge, edgeSet_sdiff, Subgraph.IsPerfectMatching.isAlternating_symmDiff_right
supSet πŸ“–CompOp
4 mathmath: EdgeLabeling.iSup_labelGraph, sSup_adj, isAcyclic_sSup_of_isAcyclic_directedOn, iSup_adj
support πŸ“–CompOp
18 mathmath: mem_support, Preconnected.support_eq_univ, degree_eq_zero_iff_notMem_support, support_of_subsingleton, support_top_of_nontrivial, isBipartiteWith_support_subset, support_eq_bot_iff, mem_support_of_reachable, degree_induce_support, support_bot, sum_degrees_support_eq_twice_card_edges, support_mono, degree_pos_iff_mem_support, neighborSet_subset_support, support_map, card_edgeFinset_induce_support, mem_support_of_mem_walk_support, support_deleteIncidenceSet_subset
uniqueOfSubsingleton πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adj_comm πŸ“–mathematicalβ€”Adjβ€”symm
adj_congr_of_sym2 πŸ“–mathematicalβ€”Adjβ€”adj_comm
adj_iff_exists_edge πŸ“–mathematicalβ€”Adj
Sym2
Set
Set.instMembership
edgeSet
SetLike.instMembership
Sym2.instSetLike
β€”ne_of_adj
mem_edgeSet
Sym2.mem_and_mem_iff
adj_iff_exists_edge_coe πŸ“–mathematicalβ€”Adj
Sym2
Set
Set.instMembership
edgeSet
β€”β€”
adj_incidenceSet_inter πŸ“–mathematicalSym2
Set
Set.instMembership
edgeSet
SetLike.instMembership
Sym2.instSetLike
Set.instInter
incidenceSet
Sym2.Mem.other
Set.instSingletonSet
β€”Set.ext
Sym2.other_spec
Sym2.mem_and_mem_iff
edge_other_ne
Sym2.other_mem
adj_inj πŸ“–mathematicalβ€”Adjβ€”adj_injective
adj_injective πŸ“–mathematicalβ€”SimpleGraph
Adj
β€”ext
adj_of_mem_incidenceSet πŸ“–mathematicalSym2
Set
Set.instMembership
incidenceSet
Adjβ€”mk'_mem_incidenceSet_left_iff
Set.mem_singleton_iff
incidenceSet_inter_incidenceSet_subset
adj_symm πŸ“–β€”Adjβ€”β€”symm
bot_adj πŸ“–mathematicalβ€”Adj
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”
card_neighborSet_union_compl_neighborSet πŸ“–mathematicalβ€”Finset.card
Set.toFinset
Set
Set.instUnion
neighborSet
Compl.compl
SimpleGraph
instCompl
Fintype.card
β€”Set.toFinset_congr
neighborSet_union_compl_neighborSet_eq
Set.toFinset_compl
Finset.card_compl
Set.toFinset_card
commonNeighbors_eq πŸ“–mathematicalβ€”commonNeighbors
Set
Set.instInter
neighborSet
β€”β€”
commonNeighbors_subset_neighborSet_left πŸ“–mathematicalβ€”Set
Set.instHasSubset
commonNeighbors
neighborSet
β€”Set.inter_subset_left
commonNeighbors_subset_neighborSet_right πŸ“–mathematicalβ€”Set
Set.instHasSubset
commonNeighbors
neighborSet
β€”Set.inter_subset_right
commonNeighbors_symm πŸ“–mathematicalβ€”commonNeighborsβ€”Set.inter_comm
commonNeighbors_top_eq πŸ“–mathematicalβ€”commonNeighbors
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set
Set.instSDiff
Set.univ
Set.instInsert
Set.instSingletonSet
β€”Set.ext
compl_adj πŸ“–mathematicalβ€”Adj
Compl.compl
SimpleGraph
instCompl
β€”β€”
compl_neighborSet_disjoint πŸ“–mathematicalβ€”Disjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
neighborSet
Compl.compl
SimpleGraph
instCompl
β€”Set.disjoint_iff
compl_adj
mem_neighborSet
completeGraph_eq_top πŸ“–mathematicalβ€”completeGraph
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”
default_def πŸ“–mathematicalβ€”SimpleGraph
instInhabited
Bot.bot
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”
disjoint_edgeSet πŸ“–mathematicalβ€”Disjoint
Set
Sym2
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
edgeSet
SimpleGraph
instPartialOrder
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Set.disjoint_iff
disjoint_iff_inf_le
edgeSet_inf
edgeSet_bot
Set.le_iff_subset
OrderEmbedding.le_iff_le
disjoint_fromEdgeSet πŸ“–mathematicalβ€”Disjoint
SimpleGraph
instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
fromEdgeSet
Set
Sym2
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
BiheytingAlgebra.toHeytingAlgebra
edgeSet
β€”Set.diff_union_inter
disjoint_edgeSet
edgeSet_fromEdgeSet
disjoint_left πŸ“–mathematicalβ€”Disjoint
SimpleGraph
instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Adj
β€”β€”
edgeSet_bot πŸ“–mathematicalβ€”edgeSet
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set
Sym2
Set.instEmptyCollection
β€”Sym2.fromRel_bot
edgeSet_eq_empty πŸ“–mathematicalβ€”edgeSet
Set
Sym2
Set.instEmptyCollection
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”edgeSet_bot
edgeSet_eq_iff πŸ“–mathematicalβ€”edgeSet
fromEdgeSet
Disjoint
Set
Sym2
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
Sym2.diagSet
β€”fromEdgeSet_edgeSet
edgeSet_fromEdgeSet
edgeSet_fromEdgeSet πŸ“–mathematicalβ€”edgeSet
fromEdgeSet
Set
Sym2
Set.instSDiff
Sym2.diagSet
β€”Set.ext
Sym2.ind
edgeSet_inf πŸ“–mathematicalβ€”edgeSet
SimpleGraph
instMin
Set
Sym2
Set.instInter
β€”Set.ext
edgeSet_inj πŸ“–mathematicalβ€”edgeSetβ€”OrderEmbedding.eq_iff_eq
edgeSet_injective πŸ“–mathematicalβ€”SimpleGraph
Set
Sym2
edgeSet
β€”RelEmbedding.injective
edgeSet_mono πŸ“–mathematicalSimpleGraph
instLE
Set
Sym2
Set.instHasSubset
edgeSet
β€”edgeSet_subset_edgeSet
edgeSet_nonempty πŸ“–mathematicalβ€”Set.Nonempty
Sym2
edgeSet
β€”Set.nonempty_iff_ne_empty
Iff.ne
edgeSet_eq_empty
edgeSet_sdiff πŸ“–mathematicalβ€”edgeSet
SimpleGraph
sdiff
Set
Sym2
Set.instSDiff
β€”Set.ext
edgeSet_sdiff_sdiff_isDiag πŸ“–mathematicalβ€”Set
Sym2
Set.instSDiff
edgeSet
Sym2.diagSet
β€”β€”
edgeSet_ssubset_edgeSet πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSSubset
edgeSet
SimpleGraph
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”OrderEmbedding.lt_iff_lt
edgeSet_strict_mono πŸ“–mathematicalSimpleGraph
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set
Sym2
Set.instHasSSubset
edgeSet
β€”edgeSet_ssubset_edgeSet
edgeSet_subset_compl_diagSet πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSubset
edgeSet
Compl.compl
Set.instCompl
Sym2.diagSet
β€”symm
loopless
edgeSet_subset_edgeSet πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSubset
edgeSet
SimpleGraph
instLE
β€”OrderEmbedding.le_iff_le
edgeSet_subset_setOf_not_isDiag πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSubset
edgeSet
Compl.compl
Set.instCompl
Sym2.diagSet
β€”edgeSet_subset_compl_diagSet
edgeSet_sup πŸ“–mathematicalβ€”edgeSet
SimpleGraph
instMax
Set
Sym2
Set.instUnion
β€”Set.ext
edgeSet_top πŸ“–mathematicalβ€”edgeSet
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Compl.compl
Set
Sym2
Set.instCompl
Sym2.diagSet
β€”Sym2.diagSet_compl_eq_fromRel_ne
edge_mem_incidenceSet_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
edgeSet
SetLike.instMembership
Sym2.instSetLike
β€”β€”
edge_other_incident_set πŸ“–mathematicalSym2
Set
Set.instMembership
incidenceSet
otherVertexOfIncidentβ€”β€”
edge_other_ne πŸ“–β€”Sym2
Set
Set.instMembership
edgeSet
SetLike.instMembership
Sym2.instSetLike
β€”β€”ne_of_adj
Sym2.eq_swap
Sym2.other_spec
emptyGraph_eq_bot πŸ“–mathematicalβ€”emptyGraph
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”
eq_bot_iff_forall_not_adj πŸ“–mathematicalβ€”Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Adj
β€”β€”
eq_top_iff_forall_ne_adj πŸ“–mathematicalβ€”Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Adj
β€”β€”
ext πŸ“–β€”Adjβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”Adjβ€”ext
fromEdgeSet_adj πŸ“–mathematicalβ€”Adj
fromEdgeSet
Sym2
Set
Set.instMembership
β€”β€”
fromEdgeSet_disjoint πŸ“–mathematicalβ€”Disjoint
SimpleGraph
instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
fromEdgeSet
Set
Sym2
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
BiheytingAlgebra.toHeytingAlgebra
edgeSet
β€”disjoint_comm
disjoint_fromEdgeSet
fromEdgeSet_edgeSet πŸ“–mathematicalβ€”fromEdgeSet
edgeSet
β€”ext
ne_of_adj
fromEdgeSet_empty πŸ“–mathematicalβ€”fromEdgeSet
Set
Sym2
Set.instEmptyCollection
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”ext
fromEdgeSet_inter πŸ“–mathematicalβ€”fromEdgeSet
Set
Sym2
Set.instInter
SimpleGraph
instMin
β€”ext
fromEdgeSet_le πŸ“–mathematicalβ€”SimpleGraph
instLE
fromEdgeSet
Set
Sym2
Set.instHasSubset
Set.instSDiff
Sym2.diagSet
edgeSet
β€”edgeSet_fromEdgeSet
fromEdgeSet_mono πŸ“–mathematicalSet
Sym2
Set.instHasSubset
SimpleGraph
instLE
fromEdgeSet
β€”edgeSet_fromEdgeSet
Set.diff_subset_diff
fromEdgeSet_not_isDiag πŸ“–mathematicalβ€”fromEdgeSet
Compl.compl
Set
Sym2
Set.instCompl
Sym2.diagSet
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”ext
fromEdgeSet_sdiff πŸ“–mathematicalβ€”fromEdgeSet
Set
Sym2
Set.instSDiff
SimpleGraph
sdiff
β€”ext
fromEdgeSet_union πŸ“–mathematicalβ€”fromEdgeSet
Set
Sym2
Set.instUnion
SimpleGraph
instMax
β€”ext
fromEdgeSet_univ πŸ“–mathematicalβ€”fromEdgeSet
Set.univ
Sym2
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”ext
fromRel_adj πŸ“–mathematicalβ€”Adj
fromRel
β€”β€”
iInf_adj πŸ“–mathematicalβ€”Adj
iInf
SimpleGraph
infSet
β€”β€”
iInf_adj_of_nonempty πŸ“–mathematicalβ€”Adj
iInf
SimpleGraph
infSet
β€”iInf.eq_1
sInf_adj_of_nonempty
Set.range_nonempty
Set.forall_mem_range
iSup_adj πŸ“–mathematicalβ€”Adj
iSup
SimpleGraph
supSet
β€”β€”
incidenceSetEquivNeighborSet_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
neighborSet
DFunLike.coe
Equiv
Set.Elem
Sym2
incidenceSet
EquivLike.toFunLike
Equiv.instEquivLike
incidenceSetEquivNeighborSet
otherVertexOfIncident
β€”β€”
incidenceSetEquivNeighborSet_symm_apply_coe πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
DFunLike.coe
Equiv
Set.Elem
neighborSet
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
incidenceSetEquivNeighborSet
β€”β€”
incidenceSet_inter_incidenceSet_of_adj πŸ“–mathematicalAdjSet
Sym2
Set.instInter
incidenceSet
Set.instSingletonSet
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
incidenceSet_inter_incidenceSet_subset
Adj.ne
mk'_mem_incidenceSet_left_iff
mk'_mem_incidenceSet_right_iff
incidenceSet_inter_incidenceSet_of_not_adj πŸ“–mathematicalAdjSet
Sym2
Set.instInter
incidenceSet
Set.instEmptyCollection
β€”adj_of_mem_incidenceSet
incidenceSet_inter_incidenceSet_subset πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSubset
Set.instInter
incidenceSet
Set.instSingletonSet
β€”Sym2.mem_and_mem_iff
incidenceSet_subset πŸ“–mathematicalβ€”Set
Sym2
Set.instHasSubset
incidenceSet
edgeSet
β€”β€”
incidence_other_neighbor_edge πŸ“–mathematicalSet
Set.instMembership
neighborSet
otherVertexOfIncident
Sym2
incidenceSet
mem_incidence_iff_neighbor
β€”mem_incidence_iff_neighbor
Sym2.congr_right
Sym2.other_spec'
incidence_other_prop πŸ“–mathematicalSym2
Set
Set.instMembership
incidenceSet
neighborSet
otherVertexOfIncident
β€”mem_edgeSet
Sym2.other_spec'
inf_adj πŸ“–mathematicalβ€”Adj
SimpleGraph
instMin
β€”β€”
instFinite πŸ“–mathematicalβ€”Finite
SimpleGraph
β€”Finite.of_injective
Pi.finite
Prop.instFinite
ext
instNontrivial πŸ“–mathematicalβ€”Nontrivial
SimpleGraph
β€”not_subsingleton
irrefl πŸ“–mathematicalβ€”Adjβ€”loopless
isCompleteBetween_comm πŸ“–mathematicalβ€”IsCompleteBetweenβ€”Adj.symm
isSubgraph_eq_le πŸ“–mathematicalβ€”IsSubgraph
SimpleGraph
instLE
β€”β€”
le_iff_adj πŸ“–mathematicalβ€”SimpleGraph
instLE
Adj
β€”β€”
loopless πŸ“–mathematicalβ€”Adjβ€”β€”
mem_commonNeighbors πŸ“–mathematicalβ€”Set
Set.instMembership
commonNeighbors
Adj
β€”β€”
mem_edgeSet πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
edgeSet
Adj
β€”β€”
mem_incidenceSet πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
Adj
β€”β€”
mem_incidence_iff_neighbor πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
neighborSet
β€”β€”
mem_neighborSet πŸ“–mathematicalβ€”Set
Set.instMembership
neighborSet
Adj
β€”β€”
mem_support πŸ“–mathematicalβ€”Set
Set.instMembership
support
Adj
β€”β€”
mk'_apply_adj πŸ“–mathematicalβ€”Adj
DFunLike.coe
Function.Embedding
SimpleGraph
Function.instFunLikeEmbedding
mk'
β€”β€”
mk'_mem_incidenceSet_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
Adj
β€”Sym2.mem_iff
mk'_mem_incidenceSet_left_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
Adj
β€”Sym2.mem_mk_left
mk'_mem_incidenceSet_right_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
incidenceSet
Adj
β€”Sym2.mem_mk_right
ne_bot_iff_exists_adj πŸ“–mathematicalβ€”Adjβ€”β€”
ne_of_adj πŸ“–β€”Adjβ€”β€”irrefl
ne_of_adj_of_not_adj πŸ“–β€”Adjβ€”β€”β€”
ne_top_iff_exists_not_adj πŸ“–mathematicalβ€”Adjβ€”β€”
neighborSet_compl πŸ“–mathematicalβ€”neighborSet
Compl.compl
SimpleGraph
instCompl
Set
Set.instSDiff
Set.instCompl
Set.instSingletonSet
β€”Set.ext
neighborSet_subset_support πŸ“–mathematicalβ€”Set
Set.instHasSubset
neighborSet
support
β€”Adj.symm
neighborSet_union_compl_neighborSet_eq πŸ“–mathematicalβ€”Set
Set.instUnion
neighborSet
Compl.compl
SimpleGraph
instCompl
Set.instCompl
Set.instSingletonSet
β€”Set.ext
ne_of_adj
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
SimpleGraph
β€”Mathlib.Tactic.Contrapose.contrapose₁
Unique.instSubsingleton
instNontrivial
notMem_commonNeighbors_left πŸ“–mathematicalβ€”Set
Set.instMembership
commonNeighbors
β€”ne_of_adj
notMem_commonNeighbors_right πŸ“–mathematicalβ€”Set
Set.instMembership
commonNeighbors
β€”ne_of_adj
notMem_neighborSet_self πŸ“–mathematicalβ€”Set
Set.instMembership
neighborSet
β€”β€”
not_isDiag_of_mem_edgeSet πŸ“–mathematicalSym2
Set
Set.instMembership
edgeSet
Sym2.IsDiagβ€”Sym2.ind
Adj.ne
not_mem_edgeSet_of_isDiag πŸ“–mathematicalSym2.IsDiagSym2
Set
Set.instMembership
edgeSet
β€”not_isDiag_of_mem_edgeSet
sInf_adj πŸ“–mathematicalβ€”Adj
InfSet.sInf
SimpleGraph
infSet
β€”β€”
sInf_adj_of_nonempty πŸ“–mathematicalSet.Nonempty
SimpleGraph
Adj
InfSet.sInf
infSet
β€”sInf_adj
Adj.ne
sSup_adj πŸ“–mathematicalβ€”Adj
SupSet.sSup
SimpleGraph
supSet
Set
Set.instMembership
β€”β€”
sdiff_adj πŸ“–mathematicalβ€”Adj
SimpleGraph
sdiff
β€”β€”
subsingleton_iff πŸ“–mathematicalβ€”SimpleGraphβ€”Mathlib.Tactic.Contrapose.contrapose₁
instNontrivial
Unique.instSubsingleton
sup_adj πŸ“–mathematicalβ€”Adj
SimpleGraph
instMax
β€”β€”
support_bot πŸ“–mathematicalβ€”support
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set
Set.instEmptyCollection
β€”SetRel.dom_eq_empty_iff
Set.empty_def
support_eq_bot_iff πŸ“–mathematicalβ€”support
Set
Set.instEmptyCollection
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”eq_bot_iff_forall_not_adj
Set.ext_iff
SetRel.dom_eq_empty_iff
support_bot
support_mono πŸ“–mathematicalSimpleGraph
instLE
Set
Set.instHasSubset
support
β€”SetRel.dom_mono
support_of_subsingleton πŸ“–mathematicalβ€”support
Set
Set.instEmptyCollection
β€”support_bot
Unique.uniq
support_top_of_nontrivial πŸ“–mathematicalβ€”support
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set.univ
β€”Set.eq_univ_of_forall
exists_ne
symm_adj πŸ“–mathematicalβ€”Adjβ€”Adj.symm
top_adj πŸ“–mathematicalβ€”Adj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”

SimpleGraph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
ne πŸ“–β€”SimpleGraph.Adjβ€”β€”SimpleGraph.ne_of_adj
ne' πŸ“–β€”SimpleGraph.Adjβ€”β€”ne

SimpleGraph.Bot

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOp
4 mathmath: SimpleGraph.maxDegree_bot_eq_zero, SimpleGraph.bot_degree, SimpleGraph.minDegree_bot_eq_zero, SimpleGraph.bot_strongly_regular

SimpleGraph.Compl

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOp
9 mathmath: SimpleGraph.card_interedges_add_card_interedges_compl, SimpleGraph.IsRegularOfDegree.compl, SimpleGraph.neighborFinset_compl, SimpleGraph.IsSRGWith.matrix_eq, SimpleGraph.IsSRGWith.compl_is_regular, SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_adj_compl, SimpleGraph.IsSRGWith.compl, SimpleGraph.edgeDensity_add_edgeDensity_compl, SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_not_adj_compl

SimpleGraph.Inf

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOpβ€”

SimpleGraph.IsCompleteBetween

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint πŸ“–mathematicalSimpleGraph.IsCompleteBetweenDisjoint
Set
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
GeneralizedCoheytingAlgebra.toLattice
CoheytingAlgebra.toGeneralizedCoheytingAlgebra
BiheytingAlgebra.toCoheytingAlgebra
BooleanAlgebra.toBiheytingAlgebra
Set.instBooleanAlgebra
HeytingAlgebra.toOrderBot
BiheytingAlgebra.toHeytingAlgebra
β€”Set.disjoint_left
SimpleGraph.loopless

SimpleGraph.Sdiff

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOpβ€”

SimpleGraph.Sup

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOpβ€”

SimpleGraph.Top

Definitions

NameCategoryTheorems
adjDecidable πŸ“–CompOp
11 mathmath: SimpleGraph.edgeFinset_top, SimpleGraph.neighborFinset_completeEquipartiteGraph, SimpleGraph.IsSRGWith.top, SimpleGraph.degree_completeEquipartiteGraph, SimpleGraph.card_edgeFinset_top_eq_card_choose_two, SimpleGraph.complete_graph_degree, SimpleGraph.TopEdgeLabeling.labelGraph_toTopEdgeLabeling, SimpleGraph.card_commonNeighbors_top, SimpleGraph.card_edgeFinset_completeEquipartiteGraph, SimpleGraph.IsRegularOfDegree.top, SimpleGraph.card_topEdgeLabeling

SimpleGraph.neighborSet

Definitions

NameCategoryTheorems
memDecidable πŸ“–CompOpβ€”

Sym2.IsDiag

Theorems

NameKindAssumesProvesValidatesDepends On
not_mem_edgeSet πŸ“–mathematicalSym2.IsDiagSym2
Set
Set.instMembership
SimpleGraph.edgeSet
β€”SimpleGraph.not_mem_edgeSet_of_isDiag

(root)

Definitions

NameCategoryTheorems
SimpleGraph πŸ“–CompData
274 mathmath: SimpleGraph.locallyLinear_bot, SimpleGraph.cliqueSet_bot, SimpleGraph.fromEdgeSet_mono, SimpleGraph.killCopies_bot, SimpleGraph.TopEdgeLabeling.labelGraph_adj, SimpleGraph.sInf_adj, SimpleGraph.fromEdgeSet_inter, SimpleGraph.cliqueFree_two, SimpleGraph.eccent_bot, SimpleGraph.leftInverse_comap_map, SimpleGraph.deleteIncidenceSet_le, SimpleGraph.copyCount_bot, SimpleGraph.turanGraph_eq_top, SimpleGraph.edgeFinset_sdiff, SimpleGraph.isNClique_compl, SimpleGraph.bot_not_connected, SimpleGraph.isExtremal_top_free_iff_isTuranMaximal, SimpleGraph.card_edgeFinset_sup_edge, SimpleGraph.toTopEdgeLabeling_labelGraph_compl, SimpleGraph.Subgraph.verts_spanningCoe_injective, SimpleGraph.edgeFinset_top, SimpleGraph.isClique_iff_induce_eq, SimpleGraph.deleteEdges_edgeSet, SimpleGraph.instFinite, SimpleGraph.adj_injective, SimpleGraph.IsExtremal.le_iff_eq, SimpleGraph.bot_not_preconnected, SimpleGraph.Copy.topEmbedding_apply, SimpleGraph.card_interedges_add_card_interedges_compl, SimpleGraph.UnitDistEmbedding.bot_p, SimpleGraph.cycleGraph_one_eq_bot, SimpleGraph.sup_edge_self, SimpleGraph.killCopies_le_left, SimpleGraph.edgeDisjointTriangles_bot, SimpleGraph.map_le_of_subsingleton, SimpleGraph.cliqueNum_compl, SimpleGraph.emptyGraph_eq_bot, SimpleGraph.chromaticNumber_top, SimpleGraph.CliqueFree.sup_edge, SimpleGraph.center_bot, SimpleGraph.edgeSet_top, SimpleGraph.completeMultipartiteGraph.topEmbedding_apply_fst, SimpleGraph.deleteEdges_univ, SimpleGraph.lt_sup_edge, SimpleGraph.girth_bot, SimpleGraph.isTree_iff_minimal_connected, SimpleGraph.support_top_of_nontrivial, SimpleGraph.neighborFinset_completeEquipartiteGraph, SimpleGraph.IsCycles.reachable_sdiff_toSubgraph_spanningCoe, SimpleGraph.reachable_or_reachable_compl, Equiv.simpleGraph_refl, SimpleGraph.toTopEdgeLabeling_get, SimpleGraph.between_le, SimpleGraph.cycleGraph_two_eq_top, SimpleGraph.IsRegularOfDegree.compl, SimpleGraph.neighborFinset_compl, SimpleGraph.EdgeLabeling.labelGraph_le, SimpleGraph.isMaximalIndepSet_compl, SimpleGraph.IsSRGWith.top, SimpleGraph.degree_completeEquipartiteGraph, SimpleGraph.edgeSet_ssubset_edgeSet, SimpleGraph.neighborSet_union_compl_neighborSet_eq, SimpleGraph.free_bot, SimpleGraph.Subgraph.IsPerfectMatching.isAlternating_symmDiff_left, SimpleGraph.reachable_delete_edges_iff_exists_walk, SimpleGraph.edist_top, SimpleGraph.cycleGraph_three_eq_top, SimpleGraph.disjoint_edge, SimpleGraph.edgeSet_bot, SimpleGraph.edgeSet_inf, SimpleGraph.adj_and_reachable_delete_edges_iff_exists_cycle, SimpleGraph.disjoint_edgeFinset, SimpleGraph.regularityReduced_mono, SimpleGraph.edge_self_eq_bot, SimpleGraph.Subgraph.spanningCoe_le, SimpleGraph.edgeSet_subset_edgeSet, SimpleGraph.cliqueFree_bot, SimpleGraph.neighborSet_compl, SimpleGraph.exists_maximal_isMatchingFree, Digraph.toSimpleGraphStrict_top, SimpleGraph.Subgraph.spanningCoe_bot, SimpleGraph.disjoint_edgeSet, SimpleGraph.preconnected_top, SimpleGraph.EdgeLabeling.iSup_labelGraph, SimpleGraph.le_iff_adj, SimpleGraph.fromEdgeSet_not_isDiag, SimpleGraph.ConnectedComponent.top_supp_eq_univ, SimpleGraph.preconnected_bot, SimpleGraph.sup_adj, SimpleGraph.chromaticNumber_eq_card_iff, Digraph.toSimpleGraphStrict_mono, SimpleGraph.Reachable.sum_sup_edge, SimpleGraph.compl_isIndContained_compl, SimpleGraph.egirth_bot, SimpleGraph.support_eq_bot_iff, SimpleGraph.comap_surjective, SimpleGraph.connected_or_connected_compl, SimpleGraph.EdgeLabeling.pairwise_disjoint_labelGraph, SimpleGraph.extremalNumber_top, SimpleGraph.IsSRGWith.matrix_eq, SimpleGraph.edgeFinset_sup, SimpleGraph.spanningCoe_induce_le, SimpleGraph.isVertexCover_bot, SimpleGraph.dist_top_of_ne, SimpleGraph.top_adj, SimpleGraph.fromEdgeSet_sdiff, SimpleGraph.maxDegree_bot_eq_zero, SimpleGraph.isIndepSet_compl, SimpleGraph.Connected.exists_isTree_le, SimpleGraph.card_edgeFinset_top_eq_card_choose_two, SimpleGraph.fromEdgeSet_univ, SimpleGraph.vertexCoverNum_eq_zero, SimpleGraph.compl_adj, SimpleGraph.isExtremal_top_free_turanGraph, SimpleGraph.ediam_top, SimpleGraph.not_connected_bot, SimpleGraph.default_def, SimpleGraph.iInf_adj, SimpleGraph.Subgraph.coe_deleteEdges_le, Digraph.toSimpleGraphInclusive_bot, SimpleGraph.top_isIndContained_iff_top_isContained, SimpleGraph.ediam_eq_one, SimpleGraph.deleteEdges_anti, SimpleGraph.diam_eq_one, SimpleGraph.toTopEdgeLabeling_labelGraph, SimpleGraph.extremalNumber_of_fintypeCard_eq, SimpleGraph.IsContained.bot, SimpleGraph.edist_bot, SimpleGraph.fromEdgeSet_le, SimpleGraph.compl_neighborSet_disjoint, SimpleGraph.bot_isContained_iff_card_le, SimpleGraph.map_injective, SimpleGraph.le_comap_of_subsingleton, SimpleGraph.dist_bot, SimpleGraph.EdgeLabeling.pairwiseDisjoint_univ_labelGraph, SimpleGraph.isBridge_iff, SimpleGraph.isClique_sup_edge_of_ne_sdiff, SimpleGraph.diam_bot, SimpleGraph.nonempty_dart_top, SimpleGraph.turanGraph_zero, Matrix.IsAdjMatrix.toGraph_compl_eq, SimpleGraph.IsSRGWith.compl_is_regular, SimpleGraph.isMaximalClique_compl, SimpleGraph.deleteEdges_sup, SimpleGraph.IsIndContained.compl, SimpleGraph.sSup_adj, SimpleGraph.fromEdgeSet_disjoint, SimpleGraph.isClique_compl, SimpleGraph.support_bot, SimpleGraph.fromEdgeSet_empty, SimpleGraph.connected_bot_iff, SimpleGraph.map_monotone, SimpleGraph.Subgraph.IsPerfectMatching.symmDiff_isCycles, Equiv.symm_simpleGraph, Digraph.toSimpleGraphInclusive_mono, SimpleGraph.induce_singleton_eq_top, SimpleGraph.pathGraph_two_eq_top, SimpleGraph.cycleGraph_one_eq_top, SimpleGraph.sdiff_adj, SimpleGraph.lineGraph_bot, SimpleGraph.reachable_bot, SimpleGraph.Walk.IsPath.isCycles_spanningCoe_toSubgraph_sup_edge, SimpleGraph.isNIndepSet_compl, SimpleGraph.isNClique_map_copy_top, SimpleGraph.Subgraph.IsPerfectMatching.symmDiff_of_isAlternating, SimpleGraph.nontrivial_iff, SimpleGraph.bot_preconnected_iff_subsingleton, SimpleGraph.regularityReduced_le, SimpleGraph.bot_adj, SimpleGraph.isClique_bot_iff, SimpleGraph.diam_top, SimpleGraph.isClique_range_copy_top, SimpleGraph.eq_bot_iff_forall_not_adj, SimpleGraph.edgeFinset_bot, SimpleGraph.eq_top_iff_forall_eccent_eq_one, SimpleGraph.degree_compl, SimpleGraph.TopEdgeLabeling.labelGraph_toTopEdgeLabeling, SimpleGraph.maximal_isAcyclic_iff_isTree, SimpleGraph.isAcyclic_add_edge_iff_of_not_reachable, SimpleGraph.Subgraph.spanningCoe_deleteEdges_le, SimpleGraph.completeGraph_eq_top, SimpleGraph.center_top, SimpleGraph.completeEquipartiteGraph_eq_bot_iff, SimpleGraph.disjoint_left, SimpleGraph.not_isHamiltonian_bot_of_card_ne_one, SimpleGraph.isSubgraph_eq_le, SimpleGraph.edgeFinset_subset_edgeFinset, SimpleGraph.iInf_adj_of_nonempty, SimpleGraph.completeMultipartiteGraph.topEmbedding_apply_snd, SimpleGraph.chromaticNumber_top_eq_top_of_infinite, SimpleGraph.mk'_apply_adj, SimpleGraph.egirth_anti, SimpleGraph.instNontrivial, SimpleGraph.top_preconnected, SimpleGraph.sdiff_edge, SimpleGraph.Subgraph.sup_spanningCoe, SimpleGraph.Preconnected.sum_sup_edge, SimpleGraph.card_commonNeighbors_top, SimpleGraph.isMaximumClique_compl, Equiv.simpleGraph_trans, SimpleGraph.isClique_sup_edge_of_ne_iff, SimpleGraph.sup_edge_of_adj, SimpleGraph.eq_top_iff_forall_ne_adj, SimpleGraph.regularityReduced_anti, SimpleGraph.edgeFinset_eq_empty, Digraph.toSimpleGraphInclusive_top, SimpleGraph.disjoint_fromEdgeSet, SimpleGraph.bot_degree, SimpleGraph.bot_isCompleteMultipartite, SimpleGraph.radius_top, Equiv.simpleGraph_apply, SimpleGraph.Copy.ofLE_refl, SimpleGraph.triangle_removal, Digraph.toSimpleGraphStrict_bot, SimpleGraph.commonNeighbors_top_eq, SimpleGraph.IsSRGWith.compl, SimpleGraph.minDegree_bot_eq_zero, SimpleGraph.preconnected_bot_iff_subsingleton, SimpleGraph.connected_or_preconnected_compl, SimpleGraph.pathGraph_le_cycleGraph, SimpleGraph.card_edgeFinset_completeEquipartiteGraph, SimpleGraph.radius_bot, SimpleGraph.reachable_or_compl_adj, SimpleGraph.edgeFinset_sup_edge, SimpleGraph.edgeSet_sup, SimpleGraph.iSup_adj, SimpleGraph.fromEdgeSet_union, SimpleGraph.IsAlternating.sup_edge, SimpleGraph.eq_top_of_chromaticNumber_eq_card, SimpleGraph.Subgraph.spanningCoe_le_of_le, SimpleGraph.edgeSet_eq_empty, SimpleGraph.not_preconnected_bot, SimpleGraph.edgeDensity_add_edgeDensity_compl, SimpleGraph.card_neighborSet_union_compl_neighborSet, SimpleGraph.edgeSet_injective, SimpleGraph.edgeSet_sdiff, SimpleGraph.killCopies_def, SimpleGraph.IsRegularOfDegree.top, SimpleGraph.isAcyclic_bot, SimpleGraph.Hom.injective_of_top_hom, SimpleGraph.isNClique_bot_iff, SimpleGraph.bot_preconnected, SimpleGraph.indepSetFree_compl, SimpleGraph.isMaximumIndepSet_compl, SimpleGraph.ediam_bot, SimpleGraph.card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, SimpleGraph.edist_top_of_ne, SimpleGraph.edge_le_iff, SimpleGraph.cliqueFree_compl, SimpleGraph.map_le_iff_le_comap, SimpleGraph.edgeFinset_inf, SimpleGraph.cliqueFree_iff_top_free, SimpleGraph.cycleGraph_zero_eq_bot, SimpleGraph.chromaticNumber_eq_one_iff, SimpleGraph.Subgraph.IsPerfectMatching.isAlternating_symmDiff_right, SimpleGraph.map_comap_le, SimpleGraph.bot_strongly_regular, SimpleGraph.card_topEdgeLabeling, SimpleGraph.cycleGraph_zero_eq_top, SimpleGraph.subsingleton_iff, SimpleGraph.isVertexCover_empty, SimpleGraph.exists_isAcyclic_reachable_eq_le, SimpleGraph.edist_bot_of_ne, SimpleGraph.Connected.sum_sup_edge, SimpleGraph.dist_top, Digraph.toSimpleGraphStrict_subgraph_toSimpleGraphInclusive, SimpleGraph.eccent_top, SimpleGraph.inf_adj, SimpleGraph.comap_monotone, SimpleGraph.chromaticNumber_bot, SimpleGraph.deleteEdges_le, SimpleGraph.indepNum_compl, SimpleGraph.edgeFinset_ssubset_edgeFinset, SimpleGraph.Subgraph.coe_bot
aesop_graph πŸ“–CompOpβ€”
aesop_graph? πŸ“–CompOpβ€”
aesop_graph_nonterminal πŸ“–CompOpβ€”
completeBipartiteGraph πŸ“–CompOp
3 mathmath: SimpleGraph.CompleteBipartiteGraph.chromaticNumber, completeBipartiteGraph_adj, SimpleGraph.completeBipartiteGraph_isContained_iff
instDecidableRelAdjFromRelOfDecidableEq πŸ“–CompOpβ€”
instFintypeSimpleGraphOfDecidableEq πŸ“–CompOp
1 mathmath: SimpleGraph.extremalNumber_of_fintypeCard_eq

Theorems

NameKindAssumesProvesValidatesDepends On
completeBipartiteGraph_adj πŸ“–mathematicalβ€”SimpleGraph.Adj
completeBipartiteGraph
β€”β€”

---

← Back to Index