Documentation Verification Report

Clique

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Clique.lean

Statistics

MetricCount
DefinitionsCliqueFree, CliqueFreeOn, IndepSetFree, IndepSetFreeOn, IsClique, IsIndepSet, IsMaximumClique, IsMaximumIndepSet, IsNClique, IsNIndepSet, cliqueFinset, cliqueNum, cliqueSet, topEmbedding, indepNum, indepSetFinset, indepSetSet, instDecidableIsCliqueCoeFinsetOfDecidableEqOfDecidableRelAdj, instDecidableIsIndepSetCoeFinsetOfDecidableEqOfDecidableRelAdj, instDecidableIsNCliqueOfDecidableEqOfDecidableRelAdj, instDecidableIsNIndepSetOfDecidableEqOfDecidableRelAdj, topEmbeddingOfNotCliqueFree
22
Theoremsanti, cliqueFinset, cliqueFreeOn, cliqueSet, comap, mem_of_sup_edge_isNClique, mono, replaceVertex, sup_edge, anti, mono, of_succ, subset, card_le_cliqueNum, finsetMap, insert, map, mono, of_induce, of_subsingleton, sdiff_of_sup_edge, subset, subsingleton, card_le_indepNum, nonempty_mem_compl_mem_edge, isClique, isMaximalClique, maximum, isIndepSet, isMaximalIndepSet, maximum, card_eq, erase_of_mem, erase_of_sup_edge_of_mem, exists_not_adj_of_cliqueFree_succ, insert, insert_erase, isClique, map, mono, not_cliqueFree, of_induce, card_eq, isIndepSet, card_cliqueFinset_le, cliqueFinset_eq_empty_iff, cliqueFinset_map, cliqueFinset_map_of_equiv, cliqueFinset_mono, cliqueFreeOn_empty, cliqueFreeOn_of_card_lt, cliqueFreeOn_singleton, cliqueFreeOn_two, cliqueFreeOn_univ, cliqueFree_bot, cliqueFree_compl, cliqueFree_completeMultipartiteGraph, cliqueFree_iff, cliqueFree_iff_top_free, cliqueFree_map_iff, cliqueFree_of_card_lt, cliqueFree_one, cliqueFree_two, cliqueNum_compl, cliqueSet_bot, cliqueSet_eq_empty_iff, cliqueSet_map, cliqueSet_map_of_equiv, cliqueSet_mono, cliqueSet_mono', cliqueSet_one, cliqueSet_zero, coe_cliqueFinset, not_cliqueFree_of_infinite, not_cliqueFree_of_le_card, not_cliqueFree_of_le_enatCard, topEmbedding_apply_fst, topEmbedding_apply_snd, exists_isNClique_cliqueNum, exists_isNIndepSet_indepNum, exists_of_maximal_cliqueFree_not_adj, indepNum_compl, indepSetFree_compl, is3Clique_iff, is3Clique_iff_exists_cycle_length_three, is3Clique_triple_iff, isClique_bot_iff, isClique_compl, isClique_empty, isClique_iff, isClique_iff_induce_eq, isClique_iff_isChain_adj, isClique_insert, isClique_insert_of_notMem, isClique_map_finset_iff, isClique_map_finset_iff_of_nontrivial, isClique_map_iff, isClique_map_iff_of_nontrivial, isClique_map_image_iff, isClique_pair, isClique_range_copy_top, isClique_singleton, isClique_sup_edge_of_ne_iff, isClique_sup_edge_of_ne_sdiff, isIndepSet_compl, isIndepSet_iff, isIndepSet_iff_isAntichain_adj, isIndepSet_induce, isIndepSet_neighborSet_of_triangleFree, isMaximalClique_compl, isMaximalClique_iff, isMaximalIndepSet_compl, isMaximalIndepSet_iff, isMaximumClique_compl, isMaximumClique_iff, isMaximumIndepSet_compl, isMaximumIndepSet_iff, isNClique_bot_iff, isNClique_compl, isNClique_empty, isNClique_iff, isNClique_map_copy_top, isNClique_map_iff, isNClique_one, isNClique_singleton, isNClique_zero, isNIndepSet_compl, isNIndepSet_iff, isNIndepSet_induce, maximumClique_card_eq_cliqueNum, maximumClique_exists, maximumIndepSet_card_eq_indepNum, maximumIndepSet_exists, mem_cliqueFinset_iff, mem_cliqueSet_iff, mem_indepSetFinset_iff, mem_indepSetSet_iff, not_cliqueFree_card_of_top_embedding, not_cliqueFree_iff, not_cliqueFree_of_top_embedding, not_cliqueFree_zero, not_isClique_iff
142
Total164

SimpleGraph

Definitions

NameCategoryTheorems
CliqueFree πŸ“–MathDef
27 mathmath: cliqueFinset_eq_empty_iff, cliqueFree_two, completeMultipartiteGraph.not_cliqueFree_of_le_card, not_cliqueFree_of_top_embedding, not_cliqueFree_zero, turanGraph_cliqueFree, FarFromTriangleFree.not_cliqueFree, cliqueFree_bot, cliqueFreeOn_univ, cliqueFree_iff, cliqueFree_completeMultipartiteGraph, cliqueFree_of_card_lt, completeMultipartiteGraph.not_cliqueFree_of_le_enatCard, not_cliqueFree_iff, cliqueSet_eq_empty_iff, Colorable.cliqueFree, cliqueFree_one, not_cliqueFree_of_isTuranMaximal, not_cliqueFree_card_of_top_embedding, triangle_removal, cliqueFree_of_chromaticNumber_lt, IsNClique.not_cliqueFree, indepSetFree_compl, cliqueFree_compl, cliqueFree_map_iff, cliqueFree_iff_top_free, completeMultipartiteGraph.not_cliqueFree_of_infinite
CliqueFreeOn πŸ“–MathDef
6 mathmath: cliqueFreeOn_singleton, cliqueFreeOn_univ, CliqueFree.cliqueFreeOn, cliqueFreeOn_of_card_lt, cliqueFreeOn_empty, cliqueFreeOn_two
IndepSetFree πŸ“–MathDef
2 mathmath: indepSetFree_compl, cliqueFree_compl
IndepSetFreeOn πŸ“–MathDefβ€”
IsClique πŸ“–MathDef
29 mathmath: isClique_map_image_iff, isClique_iff_induce_eq, IsClique.of_subsingleton, isMaximumClique_iff, isMaximalClique_iff, isClique_map_finset_iff, isMaximalIndepSet_compl, isClique_singleton, isClique_pair, isClique_map_finset_iff_of_nontrivial, isIndepSet_compl, IsNClique.isClique, isClique_insert_of_notMem, IsMaximumClique.isClique, isMaximalClique_compl, isClique_compl, isClique_iff_isChain_adj, isClique_map_iff_of_nontrivial, isClique_iff, IsMaximumClique.isMaximalClique, isClique_bot_iff, isClique_range_copy_top, isClique_insert, isClique_sup_edge_of_ne_iff, isNClique_iff, not_isClique_iff, isClique_empty, isClique_universalVerts, isClique_map_iff
IsIndepSet πŸ“–MathDef
16 mathmath: isMaximalIndepSet_compl, isIndepSet_iff, IsMaximumIndepSet.isMaximalIndepSet, isNIndepSet_iff, isIndepSet_compl, IsNIndepSet.isIndepSet, isMaximalClique_compl, isClique_compl, isIndepSet_induce, isIndepSet_compl_iff_isVertexCover, isMaximalIndepSet_iff, isIndepSet_iff_isAntichain_adj, isMaximumIndepSet_iff, isIndepSet_neighborSet_of_triangleFree, IsMaximumIndepSet.isIndepSet, isVertexCover_compl
IsMaximumClique πŸ“–CompData
4 mathmath: maximumClique_exists, isMaximumClique_iff, isMaximumClique_compl, isMaximumIndepSet_compl
IsMaximumIndepSet πŸ“–CompData
4 mathmath: maximumIndepSet_exists, isMaximumIndepSet_iff, isMaximumClique_compl, isMaximumIndepSet_compl
IsNClique πŸ“–CompData
23 mathmath: isNClique_singleton, isNClique_compl, is3Clique_iff_exists_cycle_length_three, IsFiveWheelLike.isNClique_right, exists_isNClique_cliqueNum, TripartiteFromTriangles.is3Clique_iff, IsFiveWheelLike.isNClique_snd_right, TripartiteFromTriangles.toTriangle_is3Clique, isNClique_empty, IsFiveWheelLike.isNClique_left, is3Clique_iff, isNClique_one, isNClique_zero, mem_cliqueFinset_iff, isNIndepSet_compl, isNClique_map_copy_top, isNClique_map_iff, IsFiveWheelLike.isNClique_fst_left, exists_of_maximal_cliqueFree_not_adj, isNClique_iff, is3Clique_triple_iff, isNClique_bot_iff, mem_cliqueSet_iff
IsNIndepSet πŸ“–CompData
7 mathmath: isNClique_compl, mem_indepSetFinset_iff, isNIndepSet_iff, mem_indepSetSet_iff, isNIndepSet_compl, isNIndepSet_induce, exists_isNIndepSet_indepNum
cliqueFinset πŸ“–CompOp
19 mathmath: cliqueFinset_eq_empty_iff, EdgeDisjointTriangles.card_edgeFinset_le, cliqueFinset_mono, TripartiteFromTriangles.cliqueFinset_eq_map, FarFromTriangleFree.cliqueFinset_nonempty', coe_cliqueFinset, LocallyLinear.card_edgeFinset, cliqueFinset_map_of_equiv, ruzsaSzemerediNumber_spec, FarFromTriangleFree.cliqueFinset_nonempty, cliqueFinset_map, TripartiteFromTriangles.cliqueFinset_eq_image, LocallyLinear.le_ruzsaSzemerediNumber, mem_cliqueFinset_iff, TripartiteFromTriangles.card_triangles, FarFromTriangleFree.le_card_cliqueFinset, CliqueFree.cliqueFinset, card_cliqueFinset_le, triangle_counting
cliqueNum πŸ“–CompOp
6 mathmath: cliqueNum_compl, exists_isNClique_cliqueNum, maximumClique_card_eq_cliqueNum, cliqueNum_le_chromaticNumber, IsClique.card_le_cliqueNum, indepNum_compl
cliqueSet πŸ“–CompOp
15 mathmath: cliqueSet_bot, TripartiteFromTriangles.toTriangle_surjOn, cliqueSet_mono, coe_cliqueFinset, cliqueSet_map_of_equiv, cliqueSet_mono', cliqueSet_map, CliqueFree.cliqueSet, TripartiteFromTriangles.cliqueSet_eq_image, edgeDisjointTriangles_iff_mem_sym2_subsingleton, EdgeDisjointTriangles.mem_sym2_subsingleton, cliqueSet_eq_empty_iff, cliqueSet_zero, cliqueSet_one, mem_cliqueSet_iff
indepNum πŸ“–CompOp
5 mathmath: cliqueNum_compl, maximumIndepSet_card_eq_indepNum, IsIndepSet.card_le_indepNum, exists_isNIndepSet_indepNum, indepNum_compl
indepSetFinset πŸ“–CompOp
1 mathmath: mem_indepSetFinset_iff
indepSetSet πŸ“–CompOp
1 mathmath: mem_indepSetSet_iff
instDecidableIsCliqueCoeFinsetOfDecidableEqOfDecidableRelAdj πŸ“–CompOpβ€”
instDecidableIsIndepSetCoeFinsetOfDecidableEqOfDecidableRelAdj πŸ“–CompOpβ€”
instDecidableIsNCliqueOfDecidableEqOfDecidableRelAdj πŸ“–CompOpβ€”
instDecidableIsNIndepSetOfDecidableEqOfDecidableRelAdj πŸ“–CompOpβ€”
topEmbeddingOfNotCliqueFree πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_cliqueFinset_le πŸ“–mathematicalβ€”Finset.card
Finset
cliqueFinset
Nat.choose
Fintype.card
β€”Finset.card_univ
Finset.card_powersetCard
Finset.card_mono
IsNClique.card_eq
cliqueFinset_eq_empty_iff πŸ“–mathematicalβ€”cliqueFinset
Finset
Finset.instEmptyCollection
CliqueFree
β€”β€”
cliqueFinset_map πŸ“–mathematicalβ€”cliqueFinset
map
instDecidableMapAdj
Relation.instDecidableMapOfExistsAndEq
Adj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Fintype.decidableExistsFintype
Finset.map
Finset
Finset.map_injective
β€”Finset.coe_injective
Finset.map_injective
coe_cliqueFinset
cliqueSet_map
Finset.coe_map
Set.image_congr
cliqueFinset_map_of_equiv πŸ“–mathematicalβ€”cliqueFinset
map
Equiv.toEmbedding
instDecidableMapAdj
Relation.instDecidableMapOfExistsAndEq
Adj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Fintype.decidableExistsFintype
Finset.map
Finset
Finset.map_injective
β€”Finset.coe_injective
Finset.map_injective
coe_cliqueFinset
Finset.coe_map
cliqueSet_map_of_equiv
cliqueFinset_mono πŸ“–mathematicalSimpleGraph
instLE
Finset
Finset.instHasSubset
cliqueFinset
β€”Finset.monotone_filter_right
IsNClique.mono
cliqueFreeOn_empty πŸ“–mathematicalβ€”CliqueFreeOn
Set
Set.instEmptyCollection
β€”β€”
cliqueFreeOn_of_card_lt πŸ“–mathematicalFinset.cardCliqueFreeOn
SetLike.coe
Finset
Finset.instSetLike
β€”LT.lt.not_ge
Eq.trans_le
IsNClique.card_eq
Finset.card_mono
cliqueFreeOn_singleton πŸ“–mathematicalβ€”CliqueFreeOn
Set
Set.instSingletonSet
β€”Finset.coe_empty
Finset.coe_singleton
Nat.instCanonicallyOrderedAdd
zero_add
Finset.card_singleton
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instNoMaxOrder
cliqueFreeOn_two πŸ“–mathematicalβ€”CliqueFreeOn
Set.Pairwise
Compl.compl
Pi.instCompl
Prop.instCompl
Adj
β€”Finset.coe_insert
Finset.coe_singleton
Set.insert_subset_iff
Set.singleton_subset_iff
Adj.ne
Finset.card_pair
cliqueFreeOn_univ πŸ“–mathematicalβ€”CliqueFreeOn
Set.univ
CliqueFree
β€”β€”
cliqueFree_bot πŸ“–mathematicalβ€”CliqueFree
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”le_trans
isNClique_bot_iff
cliqueFree_compl πŸ“–mathematicalβ€”CliqueFree
Compl.compl
SimpleGraph
instCompl
IndepSetFree
β€”β€”
cliqueFree_completeMultipartiteGraph πŸ“–mathematicalFintype.cardCliqueFree
completeMultipartiteGraph
β€”cliqueFree_iff
isEmpty_iff
Fintype.exists_ne_map_eq_of_card_lt
Fintype.card_fin
top_adj
comap_adj
Embedding.map_adj_iff
cliqueFree_iff πŸ“–mathematicalβ€”CliqueFree
IsEmpty
Embedding
completeGraph
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
not_cliqueFree_iff
cliqueFree_iff_top_free πŸ“–mathematicalβ€”CliqueFree
Fintype.card
Free
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”not_iff_not
not_free
not_cliqueFree_iff
isContained_congr
cliqueFree_map_iff πŸ“–mathematicalβ€”CliqueFree
map
β€”le_or_gt
isNClique_map_iff
cliqueFree_of_card_lt πŸ“–mathematicalFintype.cardCliqueFreeβ€”cliqueFree_iff
Mathlib.Tactic.Contrapose.contrapose₁
Fintype.card_fin
Fintype.card_le_of_embedding
cliqueFree_one πŸ“–mathematicalβ€”CliqueFree
IsEmpty
β€”β€”
cliqueFree_two πŸ“–mathematicalβ€”CliqueFree
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Finset.coe_insert
Finset.coe_singleton
Adj.ne
Finset.card_pair
cliqueFree_bot
le_rfl
cliqueNum_compl πŸ“–mathematicalβ€”cliqueNum
Compl.compl
SimpleGraph
instCompl
indepNum
β€”β€”
cliqueSet_bot πŸ“–mathematicalβ€”cliqueSet
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set
Finset
Set.instEmptyCollection
β€”CliqueFree.cliqueSet
cliqueFree_bot
cliqueSet_eq_empty_iff πŸ“–mathematicalβ€”cliqueSet
Set
Finset
Set.instEmptyCollection
CliqueFree
β€”β€”
cliqueSet_map πŸ“–mathematicalβ€”cliqueSet
map
Set.image
Finset
Finset.map
β€”Set.ext
Function.Injective.injOn
Function.Embedding.injective
Finset.map_eq_image
Finset.image_preimage
Finset.filter_true_of_mem
Finset.exists_mem_ne
Ne.lt_of_le'
Finset.card_pos
Finset.coe_preimage
map_adj_apply
Finset.card_map
IsNClique.map
cliqueSet_map_of_equiv πŸ“–mathematicalβ€”cliqueSet
map
Equiv.toEmbedding
Set.image
Finset
Finset.map
β€”eq_or_ne
Set.ext
cliqueSet_one
Equiv.exists_congr_left
Finset.map_singleton
Equiv.apply_symm_apply
cliqueSet_map
cliqueSet_mono πŸ“–mathematicalSimpleGraph
instLE
Set
Finset
Set.instHasSubset
cliqueSet
β€”IsNClique.mono
cliqueSet_mono' πŸ“–mathematicalSimpleGraph
instLE
Pi.hasLe
Set
Finset
Set.instLE
cliqueSet
β€”cliqueSet_mono
cliqueSet_one πŸ“–mathematicalβ€”cliqueSet
Set.range
Finset
Finset.instSingleton
β€”Set.ext
cliqueSet_zero πŸ“–mathematicalβ€”cliqueSet
Finset
Set
Set.instSingletonSet
Finset.instEmptyCollection
β€”Set.ext
coe_cliqueFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
cliqueFinset
cliqueSet
β€”Set.ext
mem_cliqueFinset_iff
exists_isNClique_cliqueNum πŸ“–mathematicalβ€”IsNClique
cliqueNum
β€”Nat.sSup_mem
csSup_of_not_bddAbove
csSup_empty
exists_isNIndepSet_indepNum πŸ“–mathematicalβ€”IsNIndepSet
indepNum
β€”exists_isNClique_cliqueNum
exists_of_maximal_cliqueFree_not_adj πŸ“–mathematicalMaximal
SimpleGraph
instLE
CliqueFree
Adj
Finset
Finset.instMembership
IsNClique
Finset.instInsert
β€”not_forall_not
Maximal.not_prop_of_gt
lt_sup_edge
Finset.notMem_erase
Finset.erase_right_comm
CliqueFree.mem_of_sup_edge_isNClique
edge_comm
Finset.insert_erase
Finset.mem_erase_of_ne_of_mem
IsNClique.erase_of_sup_edge_of_mem
indepNum_compl πŸ“–mathematicalβ€”indepNum
Compl.compl
SimpleGraph
instCompl
cliqueNum
β€”β€”
indepSetFree_compl πŸ“–mathematicalβ€”IndepSetFree
Compl.compl
SimpleGraph
instCompl
CliqueFree
β€”β€”
is3Clique_iff πŸ“–mathematicalβ€”IsNClique
Adj
Finset
Finset.instInsert
Finset.instSingleton
β€”Finset.card_eq_three
IsNClique.card_eq
is3Clique_triple_iff
is3Clique_iff_exists_cycle_length_three πŸ“–mathematicalβ€”IsNClique
Walk.IsCycle
Walk.length
β€”Adj.symm
zero_add
is3Clique_triple_iff πŸ“–mathematicalβ€”IsNClique
Finset
Finset.instInsert
Finset.instSingleton
Adj
β€”Finset.coe_insert
Set.pairwise_insert_of_symmetric
symm
Finset.coe_singleton
Set.insert_eq_of_mem
Finset.insert_eq_of_mem
Finset.card_singleton
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Finset.card_insert_of_notMem
isClique_bot_iff πŸ“–mathematicalβ€”IsClique
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set.Subsingleton
β€”Set.pairwise_bot_iff
isClique_compl πŸ“–mathematicalβ€”IsClique
Compl.compl
SimpleGraph
instCompl
IsIndepSet
β€”isIndepSet_iff
isClique_iff
Set.Pairwise.eq_1
isClique_empty πŸ“–mathematicalβ€”IsClique
Set
Set.instEmptyCollection
β€”β€”
isClique_iff πŸ“–mathematicalβ€”IsClique
Set.Pairwise
Adj
β€”β€”
isClique_iff_induce_eq πŸ“–mathematicalβ€”IsClique
induce
Top.top
SimpleGraph
Set.Elem
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”isClique_iff
ext
Adj.ne
isClique_iff_isChain_adj πŸ“–mathematicalβ€”IsClique
IsChain
Adj
β€”Symmetric.iff
symm
isClique_insert πŸ“–mathematicalβ€”IsClique
Set
Set.instInsert
Adj
β€”Set.pairwise_insert_of_symmetric
symm
isClique_insert_of_notMem πŸ“–mathematicalSet
Set.instMembership
IsClique
Set.instInsert
Adj
β€”Set.pairwise_insert_of_symmetric_of_notMem
symm
isClique_map_finset_iff πŸ“–mathematicalβ€”IsClique
map
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Finset.map
β€”le_or_gt
IsClique.of_subsingleton
Finset.card_le_one
isClique_map_finset_iff_of_nontrivial
Finset.one_lt_card_iff_nontrivial
not_lt
isClique_map_finset_iff_of_nontrivial πŸ“–mathematicalFinset.NontrivialIsClique
map
SetLike.coe
Finset
Finset.instSetLike
Finset.map
β€”isClique_map_iff_of_nontrivial
Set.Finite.exists_finset_coe
Set.Finite.of_finite_image
Function.Injective.injOn
Function.Embedding.injective
Finset.coe_map
IsClique.map
isClique_map_iff πŸ“–mathematicalβ€”IsClique
map
Set.Subsingleton
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Set.subsingleton_or_nontrivial
isClique_map_iff_of_nontrivial
Set.Nontrivial.not_subsingleton
isClique_map_iff_of_nontrivial πŸ“–mathematicalSet.NontrivialIsClique
map
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.instEmbeddingLikeEmbedding
EmbeddingLike.apply_eq_iff_eq
Set.image_preimage_eq_iff
Set.Nontrivial.exists_ne
Set.mem_range_self
IsClique.map
isClique_map_image_iff πŸ“–mathematicalβ€”IsClique
map
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”isClique_map_iff
Function.Injective.subsingleton_image_iff
Function.Embedding.injective
Set.subsingleton_or_nontrivial
Set.image_eq_image
Set.Nontrivial.not_subsingleton
isClique_pair πŸ“–mathematicalβ€”IsClique
Set
Set.instInsert
Set.instSingletonSet
Adj
β€”Set.pairwise_pair_of_symmetric
symm
isClique_range_copy_top πŸ“–mathematicalβ€”IsClique
Set.range
DFunLike.coe
Copy
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Copy.instFunLike
β€”Copy.topEmbedding_apply
Embedding.map_adj_iff
top_adj
Iff.ne
Function.Embedding.apply_eq_iff_eq
RelEmbedding.coe_toEmbedding
isClique_singleton πŸ“–mathematicalβ€”IsClique
Set
Set.instSingletonSet
β€”β€”
isClique_sup_edge_of_ne_iff πŸ“–mathematicalβ€”IsClique
SimpleGraph
instMax
edge
Set
Set.instSDiff
Set.instSingletonSet
β€”IsClique.sdiff_of_sup_edge
edge_comm
isClique_sup_edge_of_ne_sdiff
isClique_sup_edge_of_ne_sdiff πŸ“–mathematicalIsClique
Set
Set.instSDiff
Set.instSingletonSet
SimpleGraph
instMax
edge
β€”IsClique.mono
le_sup_left
isIndepSet_compl πŸ“–mathematicalβ€”IsIndepSet
Compl.compl
SimpleGraph
instCompl
IsClique
β€”isIndepSet_iff
isClique_iff
Set.Pairwise.eq_1
isIndepSet_iff πŸ“–mathematicalβ€”IsIndepSet
Set.Pairwise
Adj
β€”β€”
isIndepSet_iff_isAntichain_adj πŸ“–mathematicalβ€”IsIndepSet
IsAntichain
Adj
β€”β€”
isIndepSet_induce πŸ“–mathematicalβ€”IsIndepSet
Set.Elem
Subgraph.verts
Subgraph.induce
Top.top
Subgraph
Subgraph.instTop
Subgraph.coe
Set.image
Set
Set.instMembership
β€”β€”
isIndepSet_neighborSet_of_triangleFree πŸ“–mathematicalCliqueFreeIsIndepSet
neighborSet
β€”Mathlib.Tactic.Push.not_forall_eq
Set.Pairwise.eq_1
IsIndepSet.eq_1
is3Clique_triple_iff
isMaximalClique_compl πŸ“–mathematicalβ€”Maximal
Set
Set.instLE
IsClique
Compl.compl
SimpleGraph
instCompl
SetLike.coe
Finset
Finset.instSetLike
IsIndepSet
β€”β€”
isMaximalClique_iff πŸ“–mathematicalβ€”Maximal
Set
Set.instLE
IsClique
Set.instHasSubset
β€”β€”
isMaximalIndepSet_compl πŸ“–mathematicalβ€”Maximal
Set
Set.instLE
IsIndepSet
Compl.compl
SimpleGraph
instCompl
SetLike.coe
Finset
Finset.instSetLike
IsClique
β€”β€”
isMaximalIndepSet_iff πŸ“–mathematicalβ€”Maximal
Set
Set.instLE
IsIndepSet
Set.instHasSubset
β€”β€”
isMaximumClique_compl πŸ“–mathematicalβ€”IsMaximumClique
Compl.compl
SimpleGraph
instCompl
IsMaximumIndepSet
β€”β€”
isMaximumClique_iff πŸ“–mathematicalβ€”IsMaximumClique
IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”IsMaximumClique.isClique
IsMaximumClique.maximum
isMaximumIndepSet_compl πŸ“–mathematicalβ€”IsMaximumIndepSet
Compl.compl
SimpleGraph
instCompl
IsMaximumClique
β€”β€”
isMaximumIndepSet_iff πŸ“–mathematicalβ€”IsMaximumIndepSet
IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”β€”
isNClique_bot_iff πŸ“–mathematicalβ€”IsNClique
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Finset.card
β€”isNClique_iff
isClique_bot_iff
Finset.card_le_one
isNClique_compl πŸ“–mathematicalβ€”IsNClique
Compl.compl
SimpleGraph
instCompl
IsNIndepSet
β€”isNIndepSet_iff
isNClique_empty πŸ“–mathematicalβ€”IsNClique
Finset
Finset.instEmptyCollection
β€”Finset.coe_empty
isNClique_iff πŸ“–mathematicalβ€”IsNClique
IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”IsNClique.isClique
IsNClique.card_eq
isNClique_map_copy_top πŸ“–mathematicalβ€”IsNClique
Fintype.card
Finset.map
Copy.toEmbedding
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Finset.univ
β€”isNClique_iff
Finset.card_map
Finset.card_univ
Finset.coe_map
Finset.coe_univ
Set.image_univ
isClique_range_copy_top
isNClique_map_iff πŸ“–mathematicalβ€”IsNClique
map
Finset.map
β€”isNClique_iff
isClique_map_finset_iff
LE.le.not_gt
Finset.card_map
IsNClique.isClique
IsNClique.card_eq
isNClique_one πŸ“–mathematicalβ€”IsNClique
Finset
Finset.instSingleton
β€”Finset.coe_singleton
isNClique_singleton πŸ“–mathematicalβ€”IsNClique
Finset
Finset.instSingleton
β€”Finset.coe_singleton
Finset.card_singleton
isNClique_zero πŸ“–mathematicalβ€”IsNClique
Finset
Finset.instEmptyCollection
β€”Finset.coe_empty
isNIndepSet_compl πŸ“–mathematicalβ€”IsNIndepSet
Compl.compl
SimpleGraph
instCompl
IsNClique
β€”isNClique_iff
isNIndepSet_iff πŸ“–mathematicalβ€”IsNIndepSet
IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
Finset.card
β€”β€”
isNIndepSet_induce πŸ“–mathematicalβ€”IsNIndepSet
Set.Elem
Subgraph.verts
Subgraph.induce
Top.top
Subgraph
Subgraph.instTop
Subgraph.coe
Finset.map
Set
Set.instMembership
Subtype.val_injective
β€”Subtype.val_injective
isIndepSet_induce
Finset.coe_map
Set.image_congr
Finset.card_map
maximumClique_card_eq_cliqueNum πŸ“–mathematicalIsMaximumCliqueFinset.card
cliqueNum
β€”exists_isNClique_cliqueNum
eq_of_le_of_not_lt
IsClique.card_le_cliqueNum
maximumClique_exists πŸ“–mathematicalβ€”IsMaximumCliqueβ€”exists_isNClique_cliqueNum
IsNClique.isClique
IsClique.card_le_cliqueNum
IsNClique.card_eq
maximumIndepSet_card_eq_indepNum πŸ“–mathematicalIsMaximumIndepSetFinset.card
indepNum
β€”maximumClique_card_eq_cliqueNum
isMaximumClique_compl
maximumIndepSet_exists πŸ“–mathematicalβ€”IsMaximumIndepSetβ€”β€”
mem_cliqueFinset_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
cliqueFinset
IsNClique
β€”Finset.mem_filter
Finset.mem_univ
mem_cliqueSet_iff πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
cliqueSet
IsNClique
β€”β€”
mem_indepSetFinset_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
indepSetFinset
IsNIndepSet
β€”Finset.mem_filter
Finset.mem_univ
mem_indepSetSet_iff πŸ“–mathematicalβ€”Finset
Set
Set.instMembership
indepSetSet
IsNIndepSet
β€”β€”
not_cliqueFree_card_of_top_embedding πŸ“–mathematicalβ€”CliqueFree
Fintype.card
β€”not_cliqueFree_iff
not_cliqueFree_iff πŸ“–mathematicalβ€”CliqueFree
Embedding
completeGraph
β€”not_cliqueFree_of_top_embedding
not_cliqueFree_of_top_embedding πŸ“–mathematicalβ€”CliqueFreeβ€”Finset.card_map
Finset.card_fin
ext
Finset.coe_map
Finset.coe_univ
Embedding.map_adj_iff
not_cliqueFree_zero πŸ“–mathematicalβ€”CliqueFreeβ€”isNClique_empty
not_isClique_iff πŸ“–mathematicalβ€”IsClique
Adj
Set
Set.instMembership
β€”β€”

SimpleGraph.CliqueFree

Theorems

NameKindAssumesProvesValidatesDepends On
anti πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.CliqueFree
β€”β€”SimpleGraph.IsNClique.mono
cliqueFinset πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph.cliqueFinset
Finset
Finset.instEmptyCollection
β€”SimpleGraph.cliqueFinset_eq_empty_iff
cliqueFreeOn πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph.CliqueFreeOnβ€”β€”
cliqueSet πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph.cliqueSet
Set
Finset
Set.instEmptyCollection
β€”SimpleGraph.cliqueSet_eq_empty_iff
comap πŸ“–β€”SimpleGraph.CliqueFreeβ€”β€”Mathlib.Tactic.Contrapose.contrapose₁
SimpleGraph.not_cliqueFree_of_top_embedding
mem_of_sup_edge_isNClique πŸ“–mathematicalSimpleGraph.CliqueFree
SimpleGraph.IsNClique
SimpleGraph
SimpleGraph.instMax
SimpleGraph.edge
Finset
Finset.instMembership
β€”sdiff_eq_left
Set.disjoint_singleton_right
SimpleGraph.IsClique.sdiff_of_sup_edge
SimpleGraph.IsNClique.isClique
SimpleGraph.IsNClique.card_eq
mono πŸ“–β€”SimpleGraph.CliqueFreeβ€”β€”Finset.exists_subset_card_eq
LE.le.trans
Eq.ge
SimpleGraph.IsNClique.card_eq
SimpleGraph.IsClique.subset
SimpleGraph.IsNClique.isClique
replaceVertex πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph.replaceVertexβ€”Mathlib.Tactic.Contrapose.contrapose₁
SimpleGraph.not_cliqueFree_iff
SimpleGraph.replaceVertex_self
Function.Embedding.apply_eq_iff_eq
SimpleGraph.adj_replaceVertex_iff_of_ne
sup_edge πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph
SimpleGraph.instMax
SimpleGraph.edge
β€”SimpleGraph.IsNClique.not_cliqueFree
SimpleGraph.IsNClique.erase_of_sup_edge_of_mem
mem_of_sup_edge_isNClique
mono

SimpleGraph.CliqueFreeOn

Theorems

NameKindAssumesProvesValidatesDepends On
anti πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.CliqueFreeOn
β€”β€”SimpleGraph.IsNClique.mono
mono πŸ“–β€”SimpleGraph.CliqueFreeOnβ€”β€”Finset.exists_subset_card_eq
LE.le.trans
Eq.ge
SimpleGraph.IsNClique.card_eq
HasSubset.Subset.trans
Set.instIsTransSubset
Finset.coe_subset
SimpleGraph.IsClique.subset
SimpleGraph.IsNClique.isClique
of_succ πŸ“–mathematicalSimpleGraph.CliqueFreeOn
Set
Set.instMembership
Set.instInter
SimpleGraph.neighborSet
β€”Finset.coe_insert
Set.insert_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_left
SimpleGraph.IsNClique.insert
subset πŸ“–β€”Set
Set.instHasSubset
SimpleGraph.CliqueFreeOn
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset

SimpleGraph.IsClique

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_cliqueNum πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.card
SimpleGraph.cliqueNum
β€”le_csSup
finsetMap πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
SimpleGraph.map
Finset.map
β€”Finset.coe_map
insert πŸ“–mathematicalSimpleGraph.IsClique
SimpleGraph.Adj
Set
Set.instInsert
β€”Set.Pairwise.insert_of_symmetric
SimpleGraph.symm
map πŸ“–mathematicalSimpleGraph.IsCliqueSimpleGraph.map
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
mono πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsClique
β€”β€”Set.Pairwise.mono'
of_induce πŸ“–mathematicalSimpleGraph.IsClique
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.induce
SimpleGraph.Subgraph.coe
Set.image
Set
Set.instMembership
β€”SimpleGraph.Subgraph.adj_sub
Subtype.coe_ne_coe
of_subsingleton πŸ“–mathematicalSet.SubsingletonSimpleGraph.IsCliqueβ€”Set.Subsingleton.pairwise
sdiff_of_sup_edge πŸ“–mathematicalSimpleGraph.IsClique
SimpleGraph
SimpleGraph.instMax
SimpleGraph.edge
Set
Set.instSDiff
Set.instSingletonSet
β€”β€”
subset πŸ“–β€”Set
Set.instHasSubset
SimpleGraph.IsClique
β€”β€”Set.Pairwise.mono
subsingleton πŸ“–mathematicalSimpleGraph.IsClique
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
Set.Subsingletonβ€”SimpleGraph.isClique_bot_iff

SimpleGraph.IsIndepSet

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_indepNum πŸ“–mathematicalSimpleGraph.IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
Finset.card
SimpleGraph.indepNum
β€”SimpleGraph.IsClique.card_le_cliqueNum
SimpleGraph.isClique_compl
nonempty_mem_compl_mem_edge πŸ“–mathematicalSimpleGraph.IsIndepSet
Sym2
Set
Set.instMembership
SimpleGraph.edgeSet
Set.Nonempty
setOf
Compl.compl
Set.instCompl
SetLike.instMembership
Sym2.instSetLike
β€”Set.not_notMem
Set.notMem_empty
Sym2.mem_mk_left
Sym2.mem_mk_right
SimpleGraph.Adj.ne

SimpleGraph.IsMaximumClique

Theorems

NameKindAssumesProvesValidatesDepends On
isClique πŸ“–mathematicalSimpleGraph.IsMaximumCliqueSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
isMaximalClique πŸ“–mathematicalSimpleGraph.IsMaximumCliqueMaximal
Set
Set.instLE
SimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
β€”isClique
Subtype.finite
Set.coe_toFinset
maximum
Finset.card_lt_card
ssubset_of_ne_of_subset
Finset.instIsNonstrictStrictOrderSubsetSSubset
Finset.instAntisymmSubset
Set.subset_toFinset
lt_irrefl
lt_of_lt_of_le
maximum πŸ“–mathematicalSimpleGraph.IsMaximumClique
SimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.cardβ€”β€”

SimpleGraph.IsMaximumIndepSet

Theorems

NameKindAssumesProvesValidatesDepends On
isIndepSet πŸ“–mathematicalSimpleGraph.IsMaximumIndepSetSimpleGraph.IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
isMaximalIndepSet πŸ“–mathematicalSimpleGraph.IsMaximumIndepSetMaximal
Set
Set.instLE
SimpleGraph.IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
β€”SimpleGraph.isMaximalClique_compl
SimpleGraph.IsMaximumClique.isMaximalClique
SimpleGraph.isMaximumClique_compl
maximum πŸ“–mathematicalSimpleGraph.IsMaximumIndepSet
SimpleGraph.IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
Finset.cardβ€”β€”

SimpleGraph.IsNClique

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq πŸ“–mathematicalSimpleGraph.IsNCliqueFinset.cardβ€”β€”
erase_of_mem πŸ“–mathematicalSimpleGraph.IsNClique
Finset
Finset.instMembership
Finset.eraseβ€”SimpleGraph.IsClique.subset
Finset.coe_erase
isClique
Finset.card_erase_of_mem
card_eq
erase_of_sup_edge_of_mem πŸ“–mathematicalSimpleGraph.IsNClique
SimpleGraph
SimpleGraph.instMax
SimpleGraph.edge
Finset
Finset.instMembership
Finset.eraseβ€”SimpleGraph.IsClique.sdiff_of_sup_edge
isClique
Finset.coe_erase
Finset.card_erase_of_mem
card_eq
exists_not_adj_of_cliqueFree_succ πŸ“–mathematicalSimpleGraph.IsNClique
SimpleGraph.CliqueFree
Finset
Finset.instMembership
SimpleGraph.Adj
β€”not_cliqueFree
insert
Mathlib.Tactic.Push.not_and_eq
insert πŸ“–mathematicalSimpleGraph.IsNClique
SimpleGraph.Adj
Finset
Finset.instInsert
β€”Finset.coe_insert
SimpleGraph.IsClique.insert
isClique
Finset.card_insert_of_notMem
SimpleGraph.Adj.ne
card_eq
insert_erase πŸ“–mathematicalSimpleGraph.IsNClique
SimpleGraph.Adj
Finset
Finset.instMembership
Finset.instInsert
Finset.erase
β€”Finset.notMem_empty
SimpleGraph.isNClique_zero
insert
erase_of_mem
isClique πŸ“–mathematicalSimpleGraph.IsNCliqueSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
β€”β€”
map πŸ“–mathematicalSimpleGraph.IsNCliqueSimpleGraph.map
Finset.map
β€”Finset.coe_map
SimpleGraph.IsClique.map
isClique
Finset.card_map
card_eq
mono πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsNClique
β€”β€”SimpleGraph.IsClique.mono
not_cliqueFree πŸ“–mathematicalSimpleGraph.IsNCliqueSimpleGraph.CliqueFreeβ€”β€”
of_induce πŸ“–mathematicalSimpleGraph.IsNClique
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.induce
SimpleGraph.Subgraph.coe
Finset.map
Set
Set.instMembership
Subtype.val_injective
β€”Subtype.val_injective
SimpleGraph.isNClique_iff
Finset.coe_map
Finset.card_map
SimpleGraph.IsClique.of_induce

SimpleGraph.IsNIndepSet

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq πŸ“–mathematicalSimpleGraph.IsNIndepSetFinset.cardβ€”β€”
isIndepSet πŸ“–mathematicalSimpleGraph.IsNIndepSetSimpleGraph.IsIndepSet
SetLike.coe
Finset
Finset.instSetLike
β€”β€”

SimpleGraph.completeMultipartiteGraph

Definitions

NameCategoryTheorems
topEmbedding πŸ“–CompOp
2 mathmath: topEmbedding_apply_fst, topEmbedding_apply_snd

Theorems

NameKindAssumesProvesValidatesDepends On
not_cliqueFree_of_infinite πŸ“–mathematicalβ€”SimpleGraph.CliqueFree
SimpleGraph.completeMultipartiteGraph
β€”SimpleGraph.not_cliqueFree_of_top_embedding
not_cliqueFree_of_le_card πŸ“–mathematicalFintype.cardSimpleGraph.CliqueFree
SimpleGraph.completeMultipartiteGraph
β€”SimpleGraph.cliqueFree_iff
SimpleGraph.CliqueFree.mono
not_cliqueFree_of_le_enatCard πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instLinearOrderENat
ENat.instNatCast
ENat.card
SimpleGraph.CliqueFree
SimpleGraph.completeMultipartiteGraph
β€”not_cliqueFree_of_infinite
not_cliqueFree_of_le_card
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENat.card_eq_coe_fintype_card
topEmbedding_apply_fst πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
SimpleGraph.Adj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
SimpleGraph.completeMultipartiteGraph
RelEmbedding.instFunLike
topEmbedding
β€”β€”
topEmbedding_apply_snd πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
SimpleGraph.Adj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
SimpleGraph.completeMultipartiteGraph
RelEmbedding.instFunLike
topEmbedding
β€”β€”

---

← Back to Index