Documentation Verification Report

Coloring

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Coloring.lean

Statistics

MetricCount
DefinitionsColorable, toColoring, Coloring, colorClass, colorClasses, mk, ofIsEmpty, bicoloring, chromaticNumber, coloringOfIsEmpty, coloring, instDecidablePredMemSetColorClassOfDecidableEq, instFintypeColoring, recolorOfCardLE, recolorOfEmbedding, recolorOfEquiv, selfColoring
17
Theoremscard_le_of_pairwise_adj, chromaticNumber_eq_sInf, chromaticNumber_le, cliqueFree, map, mono, mono_left, of_embedding, of_hom, of_isEmpty, card_colorClasses_le, colorClasses_finite, colorClasses_isPartition, color_classes_independent, colorable, injective_comp_of_pairwise_adj, mem_colorClass, mem_colorClasses, not_adj_of_mem_colorClass, surjOn_of_card_le_isClique, valid, chromaticNumber, card_le_chromaticNumber, card_le_of_colorable, card_le_of_coloring, card_le_chromaticNumber_iff_forall_surjective, chromaticNumber_bddBelow, chromaticNumber_bot, chromaticNumber_eq_biInf, chromaticNumber_eq_card_iff, chromaticNumber_eq_card_iff_forall_surjective, chromaticNumber_eq_iInf, chromaticNumber_eq_iff_colorable_not_colorable, chromaticNumber_eq_iff_forall_surjective, chromaticNumber_eq_one_iff, chromaticNumber_eq_zero_of_isEmpty, chromaticNumber_eq_zero_of_isempty, chromaticNumber_le_card, chromaticNumber_le_iff_colorable, chromaticNumber_le_of_forall_imp, chromaticNumber_le_one_of_subsingleton, chromaticNumber_mono, chromaticNumber_mono_of_embedding, chromaticNumber_mono_of_hom, chromaticNumber_ne_top_iff_exists, chromaticNumber_pos, chromaticNumber_top, chromaticNumber_top_eq_top_of_infinite, cliqueFree_of_chromaticNumber_lt, cliqueNum_le_chromaticNumber, coe_recolorOfCardLE, coe_recolorOfEmbedding, coe_recolorOfEquiv, colorableOfIsEmpty, colorable_chromaticNumber, colorable_chromaticNumber_of_fintype, colorable_iff_exists_bdd_nat_coloring, colorable_iff_forall_connectedComponents, colorable_of_chromaticNumber_ne_top, colorable_of_fintype, colorable_set_nonempty_of_colorable, colorable_zero_iff, chromaticNumber, colorable, colorable_of_cliqueFree, eq_top_of_chromaticNumber_eq_card, free_of_colorable, instInfiniteColoringOfNonempty, instNontrivialColoringOfNonempty, isEmpty_of_chromaticNumber_eq_zero, isEmpty_of_colorable_zero, le_chromaticNumber_iff_colorable, le_chromaticNumber_iff_coloring, le_chromaticNumber_iff_forall_surjective, le_chromaticNumber_of_pairwise_adj, two_le_chromaticNumber_iff_ne_bot, two_le_chromaticNumber_of_adj
77
Total94

SimpleGraph

Definitions

NameCategoryTheorems
Colorable πŸ“–MathDef
37 mathmath: colorable_iff_forall_connectedComponents, partitionable_iff_colorable, completeEquipartiteGraph_colorable, IsFiveWheelLike.not_colorable_succ, Colorable.of_isEmpty, Colorable.of_hom, colorable_chromaticNumber, Colorable.of_sum_right, Colorable.mono, Colorable.chromaticNumber_eq_sInf, colorable_iff_isCompleteMultipartite_of_maximal_cliqueFree, Partition.colorable, Colorable.of_sum_left, chromaticNumber_eq_iInf, colorable_sum, Colorable.sum_max, chromaticNumber_le_iff_colorable, chromaticNumber_eq_iff_colorable_not_colorable, colorable_iff_exists_bdd_nat_coloring, colorable_of_cliqueFree_lt_minDegree, chromaticNumber_ne_top_iff_exists, Colorable.mono_left, Colorable.of_embedding, chromaticNumber_eq_biInf, two_colorable_iff_forall_loop_even, Colorable.map, IsCompleteMultipartite.colorable_of_cliqueFree, completeMultipartiteGraph.colorable, colorable_chromaticNumber_of_fintype, chromaticNumber_bddBelow, colorable_zero_iff, colorable_set_nonempty_of_colorable, completeMultipartiteGraph.colorable_of_cliqueFree, Coloring.colorable, colorableOfIsEmpty, colorable_of_chromaticNumber_ne_top, colorable_of_fintype
Coloring πŸ“–CompOp
16 mathmath: Coloring.mem_colorClass, card_le_chromaticNumber_iff_forall_surjective, le_chromaticNumber_iff_forall_surjective, Coloring.injective_comp_of_pairwise_adj, instInfiniteColoringOfNonempty, colorable_iff_exists_bdd_nat_coloring, coe_recolorOfEmbedding, coe_recolorOfEquiv, instNontrivialColoringOfNonempty, Coloring.surjOn_of_card_le_isClique, Coloring.odd_length_iff_not_congr, chromaticNumber_eq_iff_forall_surjective, Coloring.mem_colorClasses, coe_recolorOfCardLE, Coloring.even_length_iff_congr, chromaticNumber_eq_card_iff_forall_surjective
chromaticNumber πŸ“–CompOp
45 mathmath: le_chromaticNumber_iff_colorable, le_chromaticNumber_iff_coloring, chromaticNumber_pos, two_le_chromaticNumber_of_adj, card_le_chromaticNumber_iff_forall_surjective, colorable_chromaticNumber, chromaticNumber_cycleGraph_of_even, chromaticNumber_le_sum_right, chromaticNumber_mono_of_embedding, chromaticNumber_top, Colorable.chromaticNumber_eq_sInf, chromaticNumber_le_of_forall_imp, chromaticNumber_eq_zero_of_isEmpty, chromaticNumber_eq_iInf, chromaticNumber_sum, chromaticNumber_le_card, chromaticNumber_eq_two_iff, chromaticNumber_le_iff_colorable, chromaticNumber_eq_iff_colorable_not_colorable, chromaticNumber_eq_card_iff, chromaticNumber_le_two_iff_isBipartite, CompleteBipartiteGraph.chromaticNumber, two_le_chromaticNumber_iff_ne_bot, le_chromaticNumber_iff_forall_surjective, Colorable.chromaticNumber_le, cliqueNum_le_chromaticNumber, chromaticNumber_cycleGraph_of_odd, chromaticNumber_le_one_of_subsingleton, le_chromaticNumber_of_pairwise_adj, chromaticNumber_mono, chromaticNumber_eq_zero_of_isempty, completeMultipartiteGraph.chromaticNumber, chromaticNumber_eq_biInf, chromaticNumber_top_eq_top_of_infinite, chromaticNumber_le_sum_left, IsClique.card_le_chromaticNumber, chromaticNumber_eq_iff_forall_surjective, colorable_chromaticNumber_of_fintype, chromaticNumber_pathGraph, Walk.three_le_chromaticNumber_of_odd_loop, chromaticNumber_mono_of_hom, chromaticNumber_eq_one_iff, chromaticNumber_eq_card_iff_forall_surjective, colorable_of_chromaticNumber_ne_top, chromaticNumber_bot
coloringOfIsEmpty πŸ“–CompOpβ€”
instDecidablePredMemSetColorClassOfDecidableEq πŸ“–CompOpβ€”
instFintypeColoring πŸ“–CompOpβ€”
recolorOfCardLE πŸ“–CompOp
1 mathmath: coe_recolorOfCardLE
recolorOfEmbedding πŸ“–CompOp
1 mathmath: coe_recolorOfEmbedding
recolorOfEquiv πŸ“–CompOp
1 mathmath: coe_recolorOfEquiv
selfColoring πŸ“–CompOp
1 mathmath: Partition.default_def

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_chromaticNumber_iff_forall_surjective πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
Fintype.card
chromaticNumber
DFunLike.coe
Coloring
RelHom.instFunLike
Adj
completeGraph
β€”Coloring.valid
Nat.notMem_of_lt_sInf
LT.lt.trans_le
Fintype.card_pos_iff
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Colorable.chromaticNumber_eq_sInf
Coloring.colorable
Fintype.card_subtype_compl
Fintype.card_unique
Fintype.card_fin
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
LT.lt.le
LT.lt.not_ge
Fintype.card_le_of_surjective
Function.Embedding.nonempty_of_card_le
Function.Surjective.of_comp
chromaticNumber_bddBelow πŸ“–mathematicalβ€”BddBelow
setOf
Colorable
β€”zero_le
Nat.instCanonicallyOrderedAdd
chromaticNumber_bot πŸ“–mathematicalβ€”chromaticNumber
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”LE.le.antisymm
Colorable.chromaticNumber_le
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
chromaticNumber_pos
chromaticNumber_eq_biInf πŸ“–mathematicalβ€”chromaticNumber
iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
Set
Set.instMembership
setOf
Colorable
ENat.instNatCast
β€”β€”
chromaticNumber_eq_card_iff πŸ“–mathematicalβ€”chromaticNumber
ENat
ENat.instNatCast
Fintype.card
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”eq_top_of_chromaticNumber_eq_card
chromaticNumber_top
chromaticNumber_eq_card_iff_forall_surjective πŸ“–mathematicalβ€”chromaticNumber
ENat
ENat.instNatCast
Fintype.card
DFunLike.coe
Coloring
RelHom.instFunLike
Adj
completeGraph
β€”LE.le.ge_iff_eq
Colorable.chromaticNumber_le
card_le_chromaticNumber_iff_forall_surjective
chromaticNumber_eq_iInf πŸ“–mathematicalβ€”chromaticNumber
iInf
ENat
Set.Elem
setOf
Colorable
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ENat.instNatCast
Set
Set.instMembership
β€”chromaticNumber.eq_1
iInf_subtype
chromaticNumber_eq_iff_colorable_not_colorable πŸ“–mathematicalβ€”chromaticNumber
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
ENat.instNatCast
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Colorable
β€”eq_iff_le_not_lt
not_lt
ENat.add_one_le_iff
ENat.coe_ne_top
not_le
chromaticNumber_le_iff_colorable
Nat.cast_add_one
chromaticNumber_eq_iff_forall_surjective πŸ“–mathematicalβ€”chromaticNumber
ENat
ENat.instNatCast
DFunLike.coe
Coloring
RelHom.instFunLike
Adj
completeGraph
β€”LE.le.ge_iff_eq
Colorable.chromaticNumber_le
le_chromaticNumber_iff_forall_surjective
chromaticNumber_eq_one_iff πŸ“–mathematicalβ€”chromaticNumber
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Mathlib.Tactic.Contrapose.contrapose₁
ne_bot_iff_exists_adj
Nat.instAtLeastTwoHAddOfNat
two_le_chromaticNumber_of_adj
Mathlib.Tactic.Contrapose.contrapose₃
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
not_isEmpty_iff
Colorable.chromaticNumber_le
colorable_zero_iff
Nat.cast_zero
NeZero.one
chromaticNumber_bot
chromaticNumber_eq_zero_of_isEmpty πŸ“–mathematicalβ€”chromaticNumber
ENat
instZeroENat
β€”nonpos_iff_eq_zero
Nat.cast_zero
chromaticNumber_le_iff_colorable
Colorable.of_isEmpty
chromaticNumber_eq_zero_of_isempty πŸ“–mathematicalβ€”chromaticNumber
ENat
instZeroENat
β€”chromaticNumber_eq_zero_of_isEmpty
chromaticNumber_le_card πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
ENat.instNatCast
Fintype.card
β€”chromaticNumber_top
chromaticNumber_mono_of_hom
chromaticNumber_le_iff_colorable πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
ENat.instNatCast
Colorable
β€”LT.lt.ne
WithTop.coe_lt_top
chromaticNumber_ne_top_iff_exists
Nat.sInf_mem
Colorable.mono
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Colorable.chromaticNumber_eq_sInf
Set.mem_setOf_eq
Colorable.chromaticNumber_le
chromaticNumber_le_of_forall_imp πŸ“–mathematicalColorableENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
β€”chromaticNumber.eq_1
chromaticNumber_le_iff_colorable
chromaticNumber_le_one_of_subsingleton πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”Nat.cast_one
chromaticNumber_le_iff_colorable
chromaticNumber_mono πŸ“–mathematicalSimpleGraph
instLE
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
β€”chromaticNumber_le_of_forall_imp
Colorable.mono_left
chromaticNumber_mono_of_embedding πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
β€”chromaticNumber_mono_of_hom
chromaticNumber_mono_of_hom πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
β€”chromaticNumber_le_of_forall_imp
Colorable.of_hom
chromaticNumber_ne_top_iff_exists πŸ“–mathematicalβ€”Colorableβ€”chromaticNumber.eq_1
iInf_subtype
lt_top_iff_ne_top
ENat.iInf_coe_lt_top
chromaticNumber_pos πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instZeroENat
chromaticNumber
β€”Colorable.chromaticNumber_eq_sInf
Nat.cast_pos
le_csInf
colorable_set_nonempty_of_colorable
lt_of_lt_of_le
chromaticNumber_top πŸ“–mathematicalβ€”chromaticNumber
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
ENat.instNatCast
Fintype.card
β€”chromaticNumber_eq_card_iff_forall_surjective
Coloring.colorable
Finite.injective_iff_surjective
Finite.of_fintype
Mathlib.Tactic.Contrapose.contrapose₁
Coloring.valid
chromaticNumber_top_eq_top_of_infinite πŸ“–mathematicalβ€”chromaticNumber
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
instTopENat
β€”chromaticNumber_ne_top_iff_exists
not_injective_infinite_finite
Finite.of_fintype
Hom.injective_of_top_hom
cliqueFree_of_chromaticNumber_lt πŸ“–mathematicalENat
Preorder.toLT
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
ENat.instNatCast
CliqueFreeβ€”LT.lt.ne_top
chromaticNumber_ne_top_iff_exists
colorable_chromaticNumber
Colorable.cliqueFree
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENat.coe_toNat_eq_self
cliqueNum_le_chromaticNumber πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
cliqueNum
chromaticNumber
β€”exists_isNClique_cliqueNum
IsClique.card_le_chromaticNumber
IsNClique.isClique
IsNClique.card_eq
coe_recolorOfCardLE πŸ“–mathematicalFintype.cardDFunLike.coe
Function.Embedding
Coloring
Function.instFunLikeEmbedding
recolorOfCardLE
Hom.comp
completeGraph
Embedding.toHom
Embedding.completeGraph
Nonempty.some
Function.Embedding.nonempty_of_card_le
β€”β€”
coe_recolorOfEmbedding πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Coloring
Function.instFunLikeEmbedding
recolorOfEmbedding
Hom.comp
completeGraph
Embedding.toHom
Embedding.completeGraph
β€”β€”
coe_recolorOfEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Coloring
EquivLike.toFunLike
Equiv.instEquivLike
recolorOfEquiv
Hom.comp
completeGraph
Embedding.toHom
Embedding.completeGraph
Equiv.toEmbedding
β€”β€”
colorableOfIsEmpty πŸ“–mathematicalβ€”Colorableβ€”Colorable.of_isEmpty
colorable_chromaticNumber πŸ“–mathematicalβ€”Colorable
ENat.toNat
chromaticNumber
β€”Colorable.chromaticNumber_eq_sInf
colorable_set_nonempty_of_colorable
Nat.sInf_def
Nat.find_spec
colorable_chromaticNumber_of_fintype πŸ“–mathematicalβ€”Colorable
ENat.toNat
chromaticNumber
β€”nonempty_fintype
colorable_chromaticNumber
colorable_of_fintype
colorable_iff_exists_bdd_nat_coloring πŸ“–mathematicalβ€”Colorable
DFunLike.coe
Coloring
RelHom.instFunLike
Adj
completeGraph
β€”Fintype.card_fin
Coloring.valid
colorable_iff_forall_connectedComponents πŸ“–mathematicalβ€”Colorable
ConnectedComponent
SetLike.instMembership
ConnectedComponent.instSetLike
ConnectedComponent.toSimpleGraph
β€”Coloring.valid
colorable_of_chromaticNumber_ne_top πŸ“–mathematicalβ€”Colorable
ENat.toNat
chromaticNumber
β€”chromaticNumber_ne_top_iff_exists
colorable_chromaticNumber
colorable_of_fintype πŸ“–mathematicalβ€”Colorable
Fintype.card
β€”Coloring.colorable
colorable_set_nonempty_of_colorable πŸ“–mathematicalβ€”Set.Nonempty
setOf
Colorable
β€”β€”
colorable_zero_iff πŸ“–mathematicalβ€”Colorable
IsEmpty
β€”isEmpty_of_colorable_zero
Colorable.of_isEmpty
eq_top_of_chromaticNumber_eq_card πŸ“–mathematicalchromaticNumber
ENat
ENat.instNatCast
Fintype.card
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”ne_top_iff_exists_not_adj
chromaticNumber_le_iff_colorable
Fintype.card_congr'
Fintype.card_subtype_compl
Fintype.card_unique
Coloring.colorable
Fintype.one_lt_card_iff_nontrivial
nontrivial_iff
ENat.coe_le_coe
ENat.coe_sub
ENat.coe_one
free_of_colorable πŸ“–mathematicalColorableFreeβ€”Mathlib.Tactic.Contrapose.contraposeβ‚„
instInfiniteColoringOfNonempty πŸ“–mathematicalβ€”Infinite
Coloring
β€”Infinite.of_injective
instNontrivialColoringOfNonempty πŸ“–mathematicalβ€”Nontrivial
Coloring
β€”nontrivial_iff_exists_ne
isEmpty_of_chromaticNumber_eq_zero πŸ“–mathematicalchromaticNumber
ENat
instZeroENat
IsEmptyβ€”colorable_of_chromaticNumber_ne_top
ENat.zero_ne_top
isEmpty_of_colorable_zero
isEmpty_of_colorable_zero πŸ“–mathematicalβ€”IsEmptyβ€”β€”
le_chromaticNumber_iff_colorable πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
chromaticNumber
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
le_chromaticNumber_iff_coloring πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
chromaticNumber
β€”β€”
le_chromaticNumber_iff_forall_surjective πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
chromaticNumber
DFunLike.coe
Coloring
RelHom.instFunLike
Adj
completeGraph
β€”Fintype.card_fin
le_chromaticNumber_of_pairwise_adj πŸ“–mathematicalNat.card
Pairwise
Adj
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
chromaticNumber
β€”le_chromaticNumber_iff_colorable
LE.le.trans
Colorable.card_le_of_pairwise_adj
two_le_chromaticNumber_iff_ne_bot πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
chromaticNumber
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Contrapose.contrapose₃
chromaticNumber_eq_zero_of_isEmpty
chromaticNumber_eq_one_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ne_bot_iff_exists_adj
two_le_chromaticNumber_of_adj
two_le_chromaticNumber_of_adj πŸ“–mathematicalAdjENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
chromaticNumber
β€”le_of_not_gt
Nat.instAtLeastTwoHAddOfNat
chromaticNumber_le_iff_colorable
Order.le_of_lt_add_one
Coloring.valid

SimpleGraph.Colorable

Definitions

NameCategoryTheorems
toColoring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_of_pairwise_adj πŸ“–mathematicalPairwise
SimpleGraph.Adj
Nat.cardβ€”Nat.card_eq_fintype_card
Fintype.card_fin
Nat.card_le_card_of_injective
Finite.of_fintype
SimpleGraph.Coloring.injective_comp_of_pairwise_adj
chromaticNumber_eq_sInf πŸ“–mathematicalβ€”SimpleGraph.chromaticNumber
ENat
ENat.instNatCast
InfSet.sInf
Nat.instInfSet
setOf
SimpleGraph.Colorable
β€”ENat.coe_sInf
SimpleGraph.chromaticNumber.eq_1
chromaticNumber_le πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
SimpleGraph.chromaticNumber
ENat.instNatCast
β€”chromaticNumber_eq_sInf
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
csInf_le
SimpleGraph.chromaticNumber_bddBelow
cliqueFree πŸ“–mathematicalβ€”SimpleGraph.CliqueFreeβ€”SimpleGraph.IsClique.card_le_of_colorable
map πŸ“–mathematicalβ€”SimpleGraph.Colorable
SimpleGraph.map
β€”Function.Injective.extend_apply
Function.Embedding.injective
SimpleGraph.Coloring.valid
mono πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”Fintype.card_fin
mono_left πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.Colorableβ€”β€”
of_embedding πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”of_hom
of_hom πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”Fintype.card_fin
of_isEmpty πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”β€”

SimpleGraph.Coloring

Definitions

NameCategoryTheorems
colorClass πŸ“–CompOp
3 mathmath: mem_colorClass, color_classes_independent, mem_colorClasses
colorClasses πŸ“–CompOp
5 mathmath: colorClasses_finite, card_colorClasses_le, colorClasses_isPartition, toPartition_parts, mem_colorClasses
mk πŸ“–CompOpβ€”
ofIsEmpty πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_colorClasses_le πŸ“–mathematicalβ€”Fintype.card
Set.Elem
Set
colorClasses
β€”Setoid.card_classes_ker_le
colorClasses_finite πŸ“–mathematicalβ€”Set.Finite
Set
colorClasses
β€”Setoid.finite_classes_ker
colorClasses_isPartition πŸ“–mathematicalβ€”Setoid.IsPartition
colorClasses
β€”Setoid.isPartition_classes
color_classes_independent πŸ“–mathematicalβ€”IsAntichain
SimpleGraph.Adj
colorClass
β€”not_adj_of_mem_colorClass
colorable πŸ“–mathematicalβ€”SimpleGraph.Colorable
Fintype.card
β€”Fintype.card_fin
injective_comp_of_pairwise_adj πŸ“–mathematicalPairwise
SimpleGraph.Adj
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.completeGraph
β€”Function.injective_iff_pairwise_ne
Pairwise.mono
valid
mem_colorClass πŸ“–mathematicalβ€”Set
Set.instMembership
colorClass
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.completeGraph
β€”β€”
mem_colorClasses πŸ“–mathematicalβ€”Set
Set.instMembership
colorClasses
colorClass
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.completeGraph
β€”β€”
not_adj_of_mem_colorClass πŸ“–mathematicalSet
Set.instMembership
colorClass
SimpleGraph.Adjβ€”valid
surjOn_of_card_le_isClique πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
Fintype.card
Finset.card
Set.SurjOn
DFunLike.coe
SimpleGraph.Coloring
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.completeGraph
Set.univ
β€”SimpleGraph.card_le_chromaticNumber_iff_forall_surjective
SimpleGraph.chromaticNumber_top
Fintype.card_coe
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Subtype.coe_prop
valid πŸ“–β€”SimpleGraph.Adjβ€”β€”RelHom.map_rel

SimpleGraph.CompleteBipartiteGraph

Definitions

NameCategoryTheorems
bicoloring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
chromaticNumber πŸ“–mathematicalβ€”SimpleGraph.chromaticNumber
completeBipartiteGraph
ENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Nat.cast_two
SimpleGraph.chromaticNumber_eq_iff_forall_surjective
SimpleGraph.Coloring.colorable
Fintype.card_fin
Fintype.two_lt_card_iff
SimpleGraph.Coloring.valid

SimpleGraph.IsClique

Theorems

NameKindAssumesProvesValidatesDepends On
card_le_chromaticNumber πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
ENat.instNatCast
Finset.card
SimpleGraph.chromaticNumber
β€”SimpleGraph.le_chromaticNumber_of_pairwise_adj
Nat.card_eq_fintype_card
Fintype.card_coe
card_le_of_colorable πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.cardβ€”Nat.card_eq_fintype_card
Fintype.card_coe
SimpleGraph.Colorable.card_le_of_pairwise_adj
card_le_of_coloring πŸ“–mathematicalSimpleGraph.IsClique
SetLike.coe
Finset
Finset.instSetLike
Finset.card
Fintype.card
β€”card_le_of_colorable
SimpleGraph.Coloring.colorable

SimpleGraph.completeMultipartiteGraph

Definitions

NameCategoryTheorems
coloring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
chromaticNumber πŸ“–mathematicalβ€”SimpleGraph.chromaticNumber
SimpleGraph.completeMultipartiteGraph
ENat
ENat.instNatCast
Fintype.card
β€”le_antisymm
SimpleGraph.Colorable.chromaticNumber_le
colorable
not_cliqueFree_of_le_card
le_rfl
SimpleGraph.cliqueFree_of_chromaticNumber_lt
colorable πŸ“–mathematicalβ€”SimpleGraph.Colorable
SimpleGraph.completeMultipartiteGraph
Fintype.card
β€”SimpleGraph.Coloring.colorable
colorable_of_cliqueFree πŸ“–mathematicalSimpleGraph.CliqueFree
SimpleGraph.completeMultipartiteGraph
SimpleGraph.Colorableβ€”SimpleGraph.not_cliqueFree_zero
not_cliqueFree_of_infinite
SimpleGraph.Colorable.mono
SimpleGraph.Coloring.colorable
not_cliqueFree_of_le_card
le_rfl
Mathlib.Tactic.Contrapose.contraposeβ‚‚
SimpleGraph.CliqueFree.mono

---

← Back to Index