Documentation Verification Report

CompleteMultipartite

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/CompleteMultipartite.lean

Statistics

MetricCount
DefinitionsIsCompleteMultipartite, iso, setoid, IsPathGraph3Compl, pathGraph3ComplEmbedding, completeEquipartiteGraph, completeMultipartiteGraph, turanGraph, pathGraph3ComplEmbeddingOf
9
Theoremscolorable_of_cliqueFree, comap, adj, fst_ne_snd, ne_fst, ne_snd, not_adj_fst, not_adj_snd, bot_isCompleteMultipartite, card_edgeFinset_completeEquipartiteGraph, isCompleteMultipartite, completeEquipartiteGraph_adj, completeEquipartiteGraph_eq_bot_iff, isCompleteMultipartite, degree_completeEquipartiteGraph, exists_isPathGraph3Compl_of_not_isCompleteMultipartite, isCompleteMultipartite_iff, isContained_completeEquipartiteGraph_of_colorable, neighborFinset_completeEquipartiteGraph, neighborSet_completeEquipartiteGraph, not_isCompleteMultipartite_iff_exists_isPathGraph3Compl, not_isCompleteMultipartite_of_pathGraph3ComplEmbedding
22
Total31

SimpleGraph

Definitions

NameCategoryTheorems
IsCompleteMultipartite πŸ“–MathDef
7 mathmath: not_isCompleteMultipartite_iff_exists_isPathGraph3Compl, colorable_iff_isCompleteMultipartite_of_maximal_cliqueFree, bot_isCompleteMultipartite, not_isCompleteMultipartite_of_pathGraph3ComplEmbedding, completeMultipartiteGraph.isCompleteMultipartite, completeEquipartiteGraph.isCompleteMultipartite, isCompleteMultipartite_iff
IsPathGraph3Compl πŸ“–CompData
3 mathmath: not_isCompleteMultipartite_iff_exists_isPathGraph3Compl, exists_isPathGraph3Compl_of_not_isCompleteMultipartite, IsFiveWheelLike.isPathGraph3Compl
completeEquipartiteGraph πŸ“–CompOp
9 mathmath: completeEquipartiteGraph_colorable, isContained_completeEquipartiteGraph_of_colorable, neighborFinset_completeEquipartiteGraph, degree_completeEquipartiteGraph, completeEquipartiteGraph_adj, completeEquipartiteGraph_eq_bot_iff, card_edgeFinset_completeEquipartiteGraph, completeEquipartiteGraph.isCompleteMultipartite, neighborSet_completeEquipartiteGraph
pathGraph3ComplEmbeddingOf πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_isCompleteMultipartite πŸ“–mathematicalβ€”IsCompleteMultipartite
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”
card_edgeFinset_completeEquipartiteGraph πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
completeEquipartiteGraph
fintypeEdgeSet
Sym2.instFintype
instFintypeProd
Fin.fintype
instDecidableComapAdj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.adjDecidable
Nat.choose
Monoid.toNatPow
Nat.instMonoid
β€”mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero
sum_degrees_eq_twice_card_edges
degree_completeEquipartiteGraph
Finset.sum_const
smul_eq_mul
Finset.card_univ
Fintype.card_prod
Fintype.card_fin
Nat.choose_two_right
Nat.instAtLeastTwoHAddOfNat
Even.two_dvd
Nat.even_mul_pred_self
mul_assoc
mul_comm
pow_two
completeEquipartiteGraph_adj πŸ“–mathematicalβ€”Adj
completeEquipartiteGraph
β€”β€”
completeEquipartiteGraph_eq_bot_iff πŸ“–mathematicalβ€”completeEquipartiteGraph
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Mathlib.Tactic.Contrapose.contrapose_iff₁
edgeSet_nonempty
Fin.nontrivial_iff_two_le
Sym2.ind
completeEquipartiteGraph_adj
mem_edgeSet
degree_completeEquipartiteGraph πŸ“–mathematicalβ€”degree
completeEquipartiteGraph
neighborSetFintype
instFintypeProd
Fin.fintype
instDecidableComapAdj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.adjDecidable
β€”card_neighborFinset_eq_degree
neighborFinset_completeEquipartiteGraph
Finset.card_product
Finset.card_compl
Finset.card_singleton
Fintype.card_fin
Finset.card_univ
exists_isPathGraph3Compl_of_not_isCompleteMultipartite πŸ“–mathematicalIsCompleteMultipartiteIsPathGraph3Complβ€”Mathlib.Tactic.Push.not_forall_eq
Transitive.eq_1
IsCompleteMultipartite.eq_1
adj_comm
isCompleteMultipartite_iff πŸ“–mathematicalβ€”IsCompleteMultipartite
Iso
completeMultipartiteGraph
β€”RelIso.map_rel_iff
completeMultipartiteGraph.isCompleteMultipartite
isContained_completeEquipartiteGraph_of_colorable πŸ“–mathematicalFintype.card
Set.Elem
Coloring.colorClass
Subtype.fintype
Set
Set.instMembership
instDecidablePredMemSetColorClassOfDecidableEq
IsContained
completeEquipartiteGraph
β€”Function.Embedding.nonempty_iff_card_le
Fintype.card_fin
congr_heq
Subtype.heq_iff_coe_eq
Function.Embedding.injective
Coloring.mem_colorClass
Coloring.valid
neighborFinset_completeEquipartiteGraph πŸ“–mathematicalβ€”neighborFinset
completeEquipartiteGraph
neighborSetFintype
instFintypeProd
Fin.fintype
instDecidableComapAdj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.adjDecidable
SProd.sprod
Finset
Finset.instSProd
Compl.compl
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Finset.instSingleton
Finset.univ
β€”Finset.ext
neighborSet_completeEquipartiteGraph πŸ“–mathematicalβ€”neighborSet
completeEquipartiteGraph
SProd.sprod
Set
Set.instSProd
Compl.compl
Set.instCompl
Set.instSingletonSet
Set.univ
β€”Set.ext
not_isCompleteMultipartite_iff_exists_isPathGraph3Compl πŸ“–mathematicalβ€”IsCompleteMultipartite
IsPathGraph3Compl
β€”exists_isPathGraph3Compl_of_not_isCompleteMultipartite
adj_comm
not_isCompleteMultipartite_of_pathGraph3ComplEmbedding πŸ“–mathematicalβ€”IsCompleteMultipartiteβ€”Fin.instNeZeroHAddNatOfNat_mathlib_1
zero_add
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat

SimpleGraph.IsCompleteMultipartite

Definitions

NameCategoryTheorems
iso πŸ“–CompOpβ€”
setoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
colorable_of_cliqueFree πŸ“–mathematicalSimpleGraph.IsCompleteMultipartite
SimpleGraph.CliqueFree
SimpleGraph.Colorableβ€”SimpleGraph.Colorable.of_hom
SimpleGraph.completeMultipartiteGraph.colorable_of_cliqueFree
SimpleGraph.CliqueFree.comap
comap πŸ“–β€”SimpleGraph.IsCompleteMultipartiteβ€”β€”Mathlib.Tactic.Contrapose.contrapose₁
SimpleGraph.not_isCompleteMultipartite_of_pathGraph3ComplEmbedding

SimpleGraph.IsPathGraph3Compl

Definitions

NameCategoryTheorems
pathGraph3ComplEmbedding πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
adj πŸ“–mathematicalSimpleGraph.IsPathGraph3ComplSimpleGraph.Adjβ€”β€”
fst_ne_snd πŸ“–β€”SimpleGraph.IsPathGraph3Complβ€”β€”SimpleGraph.Adj.ne
adj
ne_fst πŸ“–β€”SimpleGraph.IsPathGraph3Complβ€”β€”not_adj_snd
adj
ne_snd πŸ“–β€”SimpleGraph.IsPathGraph3Complβ€”β€”not_adj_fst
SimpleGraph.Adj.symm
adj
not_adj_fst πŸ“–mathematicalSimpleGraph.IsPathGraph3ComplSimpleGraph.Adjβ€”β€”
not_adj_snd πŸ“–mathematicalSimpleGraph.IsPathGraph3ComplSimpleGraph.Adjβ€”β€”

SimpleGraph.completeEquipartiteGraph

Definitions

NameCategoryTheorems
completeMultipartiteGraph πŸ“–CompOpβ€”
turanGraph πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isCompleteMultipartite πŸ“–mathematicalβ€”SimpleGraph.IsCompleteMultipartite
SimpleGraph.completeEquipartiteGraph
β€”SimpleGraph.completeEquipartiteGraph_eq_bot_iff
SimpleGraph.bot_isCompleteMultipartite
SimpleGraph.isCompleteMultipartite_iff

SimpleGraph.completeMultipartiteGraph

Theorems

NameKindAssumesProvesValidatesDepends On
isCompleteMultipartite πŸ“–mathematicalβ€”SimpleGraph.IsCompleteMultipartite
SimpleGraph.completeMultipartiteGraph
β€”β€”

---

← Back to Index