Documentation Verification Report

EdgeConnectivity

📁 Source: Mathlib/Combinatorics/SimpleGraph/Connectivity/EdgeConnectivity.lean

Statistics

MetricCount
DefinitionsIsEdgeConnected, IsEdgeReachable
2
Theoremsconnected, preconnected, zero, anti, mono, reachable, refl, rfl, trans, zero, not_mem_edges_of_not_isEdgeReachable_two, isBridge_iff_adj_and_not_isEdgeConnected_two, isEdgeConnected_add_one, isEdgeConnected_one, isEdgeConnected_two, isEdgeReachable_add_one, isEdgeReachable_comm, isEdgeReachable_one, isEdgeReachable_two
19
Total21

SimpleGraph

Definitions

NameCategoryTheorems
IsEdgeConnected 📖MathDef
4 mathmath: isEdgeConnected_two, isEdgeConnected_add_one, isEdgeConnected_one, IsEdgeConnected.zero
IsEdgeReachable 📖MathDef
8 mathmath: isEdgeReachable_add_one, IsEdgeReachable.refl, IsEdgeReachable.zero, isEdgeReachable_two, isEdgeReachable_one, IsEdgeReachable.rfl, isEdgeReachable_comm, isBridge_iff_adj_and_not_isEdgeConnected_two

Theorems

NameKindAssumesProvesValidatesDepends On
isBridge_iff_adj_and_not_isEdgeConnected_two 📖mathematicalIsBridge
Adj
IsEdgeReachable
isBridge_iff
Eq.trans_lt
Set.encard_singleton
Nat.one_lt_ofNat
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
isEdgeReachable_one
Adj.reachable
lt_of_le_of_ne
ENat.lt_coe_add_one_iff
Set.encard_eq_one
deleteEdges_adj
isEdgeConnected_add_one 📖mathematicalIsEdgeConnected
deleteEdges
Sym2
Set
Set.instSingletonSet
isEdgeReachable_add_one
forall_swap
isEdgeConnected_one 📖mathematicalIsEdgeConnected
Preconnected
isEdgeConnected_two 📖mathematicalIsEdgeConnected
Preconnected
deleteEdges
Sym2
Set
Set.instSingletonSet
isEdgeReachable_add_one 📖mathematicalIsEdgeReachable
deleteEdges
Sym2
Set
Set.instSingletonSet
deleteEdges_deleteEdges
Set.union_comm
lt_imp_lt_of_le_of_le
Set.encard_union_le
le_refl
Set.encard_singleton
ENat.add_lt_add_iff_right
ENat.one_ne_top
Set.eq_empty_or_nonempty
deleteEdges_of_subset_diagSet
IsEdgeReachable.reachable
Set.insert_diff_self_of_mem
Set.insert_eq
Set.encard_diff_singleton_add_one
isEdgeReachable_comm 📖mathematicalIsEdgeReachableIsEdgeReachable.symm
isEdgeReachable_one 📖mathematicalIsEdgeReachable
Reachable
Nat.cast_one
deleteEdges_of_subset_diagSet
isEdgeReachable_two 📖mathematicalIsEdgeReachable
Reachable
deleteEdges
Sym2
Set
Set.instSingletonSet

SimpleGraph.IsEdgeConnected

Theorems

NameKindAssumesProvesValidatesDepends On
connected 📖mathematicalSimpleGraph.IsEdgeConnectedSimpleGraph.Connectedpreconnected
preconnected 📖mathematicalSimpleGraph.IsEdgeConnectedSimpleGraph.PreconnectedSimpleGraph.IsEdgeReachable.reachable
zero 📖mathematicalSimpleGraph.IsEdgeConnectedSimpleGraph.IsEdgeReachable.zero

SimpleGraph.IsEdgeReachable

Theorems

NameKindAssumesProvesValidatesDepends On
anti 📖SimpleGraph.IsEdgeReachablelt_imp_lt_of_le_of_le
le_refl
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
mono 📖SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsEdgeReachable
SimpleGraph.Reachable.mono
SimpleGraph.deleteEdges_mono
reachable 📖mathematicalSimpleGraph.IsEdgeReachableSimpleGraph.ReachableSimpleGraph.isEdgeReachable_one
anti
refl 📖mathematicalSimpleGraph.IsEdgeReachableSimpleGraph.Reachable.rfl
rfl 📖mathematicalSimpleGraph.IsEdgeReachablerefl
trans 📖SimpleGraph.IsEdgeReachableSimpleGraph.Reachable.trans
zero 📖mathematicalSimpleGraph.IsEdgeReachableNat.cast_zero
instIsEmptyFalse

SimpleGraph.Walk.IsTrail

Theorems

NameKindAssumesProvesValidatesDepends On
not_mem_edges_of_not_isEdgeReachable_two 📖mathematicalSimpleGraph.Walk.IsTrail
SimpleGraph.IsEdgeReachable
SimpleGraph.Walk.supportSimpleGraph.Reachable.trans
SimpleGraph.isEdgeReachable_two
disjoint_edges_takeUntil_dropUntil
SimpleGraph.Walk.mem_edges_of_not_reachable_deleteEdges
SimpleGraph.Walk.edges_reverse

---

← Back to Index