Documentation Verification Report

Subgraph

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Connectivity/Subgraph.lean

Statistics

MetricCount
DefinitionstoSubgraph, Preconnected, instCoeConnectedConnectedElemVertsCoe, instCoeFunConnectedForallForallReachableElemVertsCoe, instCoeFunPreconnectedForallForallReachableElemVertsCoe, instCoePreconnectedPreconnectedElemVertsCoe, mapToSubgraph, toSubgraph
8
TheoremstoSubgraph, coe_toSubgraph, connected_toSubgraph, maximal_connected_toSubgraph, maximal_subgraph_connected_iff, spanningCoe_toSubgraph, toSubgraph, coe_coeSubgraph, coe_subgraphMap, coe_toSubgraph, adj_union, coeSubgraph, exists_verts_eq_connectedComponentSupp, induce_verts, map, mono, mono', nonempty, preconnected, sup, coeSubgraph, degree_zero_iff, exists_adj_of_nontrivial, map, connected_iff, connected_iff', connected_iff_forall_exists_walk_subgraph, connected_induce_top_sup, connected_sup, induce_union_connected, preconnected_iff, preconnected_iff_forall_exists_walk_subgraph, singletonSubgraph_connected, subgraphOfAdj_connected, top_induce_pair_connected_of_adj, exists_isCycle_snd_verts_eq, ncard_neighborSet_toSubgraph_eq_two, neighborSet_toSubgraph_endpoint, neighborSet_toSubgraph_internal, ncard_neighborSet_toSubgraph_internal_eq_two, neighborSet_toSubgraph_endpoint, neighborSet_toSubgraph_internal, neighborSet_toSubgraph_startpoint, snd_of_toSubgraph_adj, adj_toSubgraph_iff_mem_edges, adj_toSubgraph_mapLe, connected_induce_support, edgeSet_toSubgraph, end_mem_verts_toSubgraph, exists_mem_support_forall_mem_support_imp_eq, exists_mem_support_mem_erase_mem_support_takeUntil_eq_empty, finite_neighborSet_toSubgraph, map_mapToSubgraph_eq_induce, map_mapToSubgraph_eq_induce_id, map_mapToSubgraph_hom, mem_edges_toSubgraph, mem_support_of_adj_toSubgraph, mem_verts_toSubgraph, not_nil_of_adj_toSubgraph, start_mem_verts_toSubgraph, toSubgraph_adj_getVert, toSubgraph_adj_iff, toSubgraph_adj_penultimate, toSubgraph_adj_snd, toSubgraph_append, toSubgraph_bypass_le_toSubgraph, toSubgraph_connected, toSubgraph_cons_nil_eq_subgraphOfAdj, toSubgraph_le_iff, toSubgraph_le_induce_support, toSubgraph_map, toSubgraph_reverse, toSubgraph_rotate, verts_toSubgraph, connected_induce_iff, connected_induce_union, extend_finset_to_connected, induce_connected_adj_union, induce_connected_of_patches, induce_pair_connected_of_adj, induce_sUnion_connected_of_pairwise_not_disjoint, induce_union_connected, preconnected_induce_iff
83
Total91

SimpleGraph

Theorems

NameKindAssumesProvesValidatesDepends On
connected_induce_iff πŸ“–mathematicalβ€”Connected
Set.Elem
induce
Subgraph.Connected
Subgraph.induce
Top.top
Subgraph
Subgraph.instTop
β€”induce_eq_coe_induce_top
Subgraph.connected_iff'
connected_induce_union πŸ“–mathematicalPreconnected
Set.Elem
induce
Set
Set.instMembership
Adj
Connected
Set.instUnion
β€”connected_induce_iff
Subgraph.Connected.mono
Subgraph.connected_induce_top_sup
preconnected_induce_iff
Subgraph.subgraphOfAdj_eq_induce
subgraphOfAdj_le_of_adj
Set.union_assoc
extend_finset_to_connected πŸ“–mathematicalPreconnected
Finset.Nonempty
Finset
Finset.instHasSubset
Connected
Set.Elem
SetLike.coe
Finset.instSetLike
induce
β€”Walk.end_mem_support
induce_connected_of_patches
Finset.coe_biUnion
Set.iUnion_congr_Prop
List.coe_toFinset
Set.mem_iUnionβ‚‚
Connected.preconnected
Walk.connected_induce_support
induce_connected_adj_union πŸ“–mathematicalConnected
Set.Elem
induce
Set
Set.instMembership
Adj
Set.instUnionβ€”connected_induce_union
Connected.preconnected
induce_connected_of_patches πŸ“–mathematicalSet
Set.instMembership
Set.instHasSubset
Reachable
Set.Elem
induce
Connectedβ€”connected_iff_exists_forall_reachable
Reachable.map
induce_pair_connected_of_adj πŸ“–mathematicalAdjConnected
Set.Elem
Set
Set.instInsert
Set.instSingletonSet
induce
β€”connected_induce_iff
Subgraph.top_induce_pair_connected_of_adj
induce_sUnion_connected_of_pairwise_not_disjoint πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
Connected
Set.Elem
induce
Set.sUnionβ€”Connected.nonempty
induce_connected_of_patches
Set.subset_sUnion_of_mem
Set.union_subset
Connected.preconnected
induce_union_connected
induce_union_connected πŸ“–mathematicalPreconnected
Set.Elem
induce
Set.Nonempty
Set
Set.instInter
Connected
Set.instUnion
β€”connected_induce_iff
Subgraph.induce_union_connected
preconnected_induce_iff
preconnected_induce_iff πŸ“–mathematicalβ€”Preconnected
Set.Elem
induce
Subgraph.Preconnected
Subgraph.induce
Top.top
Subgraph
Subgraph.instTop
β€”induce_eq_coe_induce_top
Subgraph.preconnected_iff

SimpleGraph.Connected

Theorems

NameKindAssumesProvesValidatesDepends On
toSubgraph πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.Connected
SimpleGraph.Subgraph.Connected
SimpleGraph.toSubgraph
β€”SimpleGraph.Subgraph.connected_iff
SimpleGraph.Preconnected.toSubgraph
preconnected
nonempty

SimpleGraph.ConnectedComponent

Definitions

NameCategoryTheorems
toSubgraph πŸ“–CompOp
5 mathmath: coe_toSubgraph, maximal_connected_toSubgraph, spanningCoe_toSubgraph, maximal_subgraph_connected_iff, connected_toSubgraph

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.coe
toSubgraph
toSimpleGraph
β€”SimpleGraph.induce_eq_coe_induce_top
connected_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.Connected
toSubgraph
β€”connected_toSimpleGraph
coe_toSubgraph
maximal_connected_toSubgraph πŸ“–mathematicalβ€”Maximal
SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
SimpleGraph.Subgraph.Connected
toSubgraph
β€”ind
connected_toSubgraph
le_trans
SimpleGraph.Subgraph.le_induce_top_verts
SimpleGraph.Subgraph.induce_mono_right
sound
SimpleGraph.Reachable.map
SimpleGraph.Connected.preconnected
SimpleGraph.Subgraph.Connected.coe
maximal_subgraph_connected_iff πŸ“–mathematicalβ€”Maximal
SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
SimpleGraph.Subgraph.Connected
toSubgraph
β€”SimpleGraph.Subgraph.Connected.nonempty
le_trans
SimpleGraph.Subgraph.le_induce_top_verts
SimpleGraph.Subgraph.induce_mono_right
sound
SimpleGraph.Reachable.map
SimpleGraph.Connected.preconnected
SimpleGraph.Subgraph.Connected.coe
le_antisymm
connected_toSubgraph
maximal_connected_toSubgraph
spanningCoe_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.spanningCoe
toSubgraph
SimpleGraph.spanningCoe
SetLike.coe
SimpleGraph.ConnectedComponent
instSetLike
toSimpleGraph
β€”SimpleGraph.spanningCoe_induce_top

SimpleGraph.Preconnected

Theorems

NameKindAssumesProvesValidatesDepends On
toSubgraph πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.Preconnected
SimpleGraph.Subgraph.Preconnected
SimpleGraph.toSubgraph
β€”SimpleGraph.Subgraph.preconnected_iff
SimpleGraph.Reachable.coe_toSubgraph

SimpleGraph.Reachable

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coeSubgraph πŸ“–mathematicalβ€”SimpleGraph.Reachable
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coeSubgraph
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.vert
Set
Set.instMembership
β€”coe_subgraphMap
coe_subgraphMap πŸ“–mathematicalβ€”SimpleGraph.Reachable
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.map
SimpleGraph.Subgraph.coe
Set
Set.instMembership
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
Set.mem_image_of_mem
Subtype.prop
β€”map
Set.mem_image_of_mem
Subtype.prop
Relation.map_apply
coe_toSubgraph πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.Reachable
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.toSubgraph
SimpleGraph.Subgraph.coe
Set
Set.instMembership
β€”map

SimpleGraph.Subgraph

Definitions

NameCategoryTheorems
Preconnected πŸ“–CompData
6 mathmath: Connected.preconnected, preconnected_iff, SimpleGraph.Preconnected.toSubgraph, SimpleGraph.preconnected_induce_iff, preconnected_iff_forall_exists_walk_subgraph, connected_iff
instCoeConnectedConnectedElemVertsCoe πŸ“–CompOpβ€”
instCoeFunConnectedForallForallReachableElemVertsCoe πŸ“–CompOpβ€”
instCoeFunPreconnectedForallForallReachableElemVertsCoe πŸ“–CompOpβ€”
instCoePreconnectedPreconnectedElemVertsCoe πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
connected_iff πŸ“–mathematicalβ€”Connected
Preconnected
Set.Nonempty
verts
β€”connected_iff'
SimpleGraph.connected_iff
preconnected_iff
Set.nonempty_coe_sort
connected_iff' πŸ“–mathematicalβ€”Connected
SimpleGraph.Connected
Set.Elem
verts
coe
β€”β€”
connected_iff_forall_exists_walk_subgraph πŸ“–mathematicalβ€”Connected
Set.Nonempty
verts
SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SimpleGraph.Walk.toSubgraph
β€”connected_iff
preconnected_iff_forall_exists_walk_subgraph
connected_induce_top_sup πŸ“–mathematicalPreconnected
Set
Set.instMembership
verts
SimpleGraph.Adj
Connected
SimpleGraph.Subgraph
instMax
induce
Top.top
instTop
Set.instInsert
Set.instSingletonSet
β€”connected_sup
Connected.preconnected
top_induce_pair_connected_of_adj
connected_sup πŸ“–mathematicalPreconnected
Set.Nonempty
verts
SimpleGraph.Subgraph
instMin
Connected
instMax
β€”connected_iff'
SimpleGraph.connected_iff_exists_forall_reachable
SimpleGraph.Reachable.map
le_sup_left
Preconnected.coe
le_sup_right
induce_union_connected πŸ“–mathematicalPreconnected
induce
Set.Nonempty
Set
SemilatticeInf.toMin
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Connected
Set.instUnion
β€”Connected.mono
le_induce_union
connected_sup
preconnected_iff πŸ“–mathematicalβ€”Preconnected
SimpleGraph.Preconnected
Set.Elem
verts
coe
β€”β€”
preconnected_iff_forall_exists_walk_subgraph πŸ“–mathematicalβ€”Preconnected
SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
SimpleGraph.Walk.toSubgraph
β€”SimpleGraph.Reachable.elim
Preconnected.coe
SimpleGraph.Walk.toSubgraph_map
preconnected_iff
SimpleGraph.Reachable.map
SimpleGraph.Walk.start_mem_verts_toSubgraph
SimpleGraph.Walk.end_mem_verts_toSubgraph
SimpleGraph.Walk.toSubgraph_connected
singletonSubgraph_connected πŸ“–mathematicalβ€”Connected
SimpleGraph.singletonSubgraph
β€”SimpleGraph.Reachable.refl
SimpleGraph.nonempty_singletonSubgraph_verts
subgraphOfAdj_connected πŸ“–mathematicalSimpleGraph.AdjConnected
SimpleGraph.subgraphOfAdj
β€”SimpleGraph.Reachable.refl
SimpleGraph.Adj.reachable
SimpleGraph.nonempty_subgraphOfAdj_verts
top_induce_pair_connected_of_adj πŸ“–mathematicalSimpleGraph.AdjConnected
induce
Top.top
SimpleGraph.Subgraph
instTop
Set
Set.instInsert
Set.instSingletonSet
β€”subgraphOfAdj_eq_induce
subgraphOfAdj_connected

SimpleGraph.Subgraph.Connected

Theorems

NameKindAssumesProvesValidatesDepends On
adj_union πŸ“–mathematicalSimpleGraph.Subgraph.Connected
Set
Set.instMembership
SimpleGraph.Subgraph.verts
SimpleGraph.Adj
SimpleGraph.Subgraph
SimpleGraph.Subgraph.instMax
SimpleGraph.Subgraph.induce
Top.top
SimpleGraph.Subgraph.instTop
Set.instInsert
Set.instSingletonSet
β€”SimpleGraph.Subgraph.connected_induce_top_sup
preconnected
coeSubgraph πŸ“–mathematicalSimpleGraph.Subgraph.Connected
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.coeSubgraphβ€”map
exists_verts_eq_connectedComponentSupp πŸ“–mathematicalSimpleGraph.Subgraph.Connected
SimpleGraph.Subgraph.Adj
SimpleGraph.Subgraph.verts
SimpleGraph.ConnectedComponent.supp
β€”SimpleGraph.ConnectedComponent.exists
nonempty
Set.ext
SimpleGraph.Reachable.map
SimpleGraph.Reachable.mem_subgraphVerts
SimpleGraph.Reachable.symm
induce_verts πŸ“–mathematicalSimpleGraph.Subgraph.ConnectedSimpleGraph.Connected
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.induce
β€”SimpleGraph.connected_induce_iff
mono
SimpleGraph.Subgraph.le_induce_top_verts
map πŸ“–mathematicalSimpleGraph.Subgraph.Connected
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.mapβ€”SimpleGraph.Subgraph.connected_iff
SimpleGraph.Subgraph.Preconnected.map
preconnected
nonempty
mono πŸ“–β€”SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.Connected
β€”β€”SimpleGraph.Subgraph.copy_eq
SimpleGraph.Connected.mono
coe
mono' πŸ“–β€”SimpleGraph.Subgraph.Adj
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.Connected
β€”β€”mono
Eq.le
nonempty πŸ“–mathematicalSimpleGraph.Subgraph.ConnectedSet.Nonempty
SimpleGraph.Subgraph.verts
β€”SimpleGraph.Subgraph.connected_iff
preconnected πŸ“–mathematicalSimpleGraph.Subgraph.ConnectedSimpleGraph.Subgraph.Preconnectedβ€”SimpleGraph.Subgraph.connected_iff
sup πŸ“–mathematicalSimpleGraph.Subgraph.Connected
Set.Nonempty
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph
SimpleGraph.Subgraph.instMin
SimpleGraph.Subgraph.instMaxβ€”SimpleGraph.Subgraph.connected_sup
preconnected

SimpleGraph.Subgraph.Preconnected

Theorems

NameKindAssumesProvesValidatesDepends On
coeSubgraph πŸ“–mathematicalSimpleGraph.Subgraph.Preconnected
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.coeSubgraphβ€”map
degree_zero_iff πŸ“–mathematicalSimpleGraph.Subgraph.PreconnectedSimpleGraph.Subgraph.degree
Set
Set.instMembership
SimpleGraph.Subgraph.verts
Set.Subsingleton
β€”Set.not_nontrivial_iff
Set.Nontrivial.coe_sort
SimpleGraph.Subgraph.coe_degree
SimpleGraph.Preconnected.degree_pos_of_nontrivial
coe
SimpleGraph.Subgraph.degree_eq_zero_of_subsingleton
exists_adj_of_nontrivial πŸ“–mathematicalSimpleGraph.Subgraph.PreconnectedSimpleGraph.Subgraph.Adj
Set
Set.instMembership
SimpleGraph.Subgraph.verts
β€”SimpleGraph.Preconnected.exists_adj_of_nontrivial
coe
map πŸ“–mathematicalSimpleGraph.Subgraph.Preconnected
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.mapβ€”SimpleGraph.Subgraph.preconnected_iff
SimpleGraph.Reachable.coe_subgraphMap
coe

SimpleGraph.Walk

Definitions

NameCategoryTheorems
mapToSubgraph πŸ“–CompOp
3 mathmath: map_mapToSubgraph_eq_induce, map_mapToSubgraph_hom, map_mapToSubgraph_eq_induce_id
toSubgraph πŸ“–CompOp
38 mathmath: edgeSet_toSubgraph, IsPath.ncard_neighborSet_toSubgraph_internal_eq_two, toSubgraph_adj_iff, toSubgraph_reverse, IsCycle.isCycles_spanningCoe_toSubgraph, SimpleGraph.IsCycles.reachable_sdiff_toSubgraph_spanningCoe, toSubgraph_adj_penultimate, toSubgraph_bypass_le_toSubgraph, map_mapToSubgraph_eq_induce, adj_toSubgraph_mapLe, toSubgraph_rotate, mem_verts_toSubgraph, IsCycle.ncard_neighborSet_toSubgraph_eq_two, IsPath.neighborSet_toSubgraph_internal, IsPath.neighborSet_toSubgraph_startpoint, IsCycle.neighborSet_toSubgraph_endpoint, finite_neighborSet_toSubgraph, SimpleGraph.Subgraph.connected_iff_forall_exists_walk_subgraph, toSubgraph_le_iff, map_mapToSubgraph_hom, toSubgraph_adj_snd, map_mapToSubgraph_eq_induce_id, end_mem_verts_toSubgraph, toSubgraph_le_induce_support, IsPath.isCycles_spanningCoe_toSubgraph_sup_edge, toSubgraph_append, verts_toSubgraph, SimpleGraph.Subgraph.preconnected_iff_forall_exists_walk_subgraph, adj_toSubgraph_iff_mem_edges, toSubgraph_cons_nil_eq_subgraphOfAdj, toSubgraph_connected, start_mem_verts_toSubgraph, toSubgraph_adj_getVert, mem_edges_toSubgraph, SimpleGraph.IsCycles.exists_cycle_toSubgraph_verts_eq_connectedComponentSupp, IsPath.neighborSet_toSubgraph_endpoint, IsCycle.neighborSet_toSubgraph_internal, toSubgraph_map

Theorems

NameKindAssumesProvesValidatesDepends On
adj_toSubgraph_iff_mem_edges πŸ“–mathematicalβ€”SimpleGraph.Subgraph.Adj
toSubgraph
Sym2
edges
β€”mem_edges_toSubgraph
SimpleGraph.Subgraph.mem_edgeSet
adj_toSubgraph_mapLe πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.Subgraph.Adj
toSubgraph
mapLe
β€”toSubgraph_map
Relation.map_id_id
connected_induce_support πŸ“–mathematicalβ€”SimpleGraph.Connected
Set.Elem
setOf
support
SimpleGraph.induce
β€”verts_toSubgraph
SimpleGraph.Subgraph.Connected.induce_verts
toSubgraph_connected
edgeSet_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.edgeSet
toSubgraph
edgeSet
β€”Set.ext
mem_edges_toSubgraph
end_mem_verts_toSubgraph πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.Subgraph.verts
toSubgraph
β€”β€”
exists_mem_support_forall_mem_support_imp_eq πŸ“–mathematicalFinset.Nonempty
Finset.filter
support
Finset
Finset.instMembership
β€”exists_mem_support_mem_erase_mem_support_takeUntil_eq_empty
Finset.instLawfulSingleton
Finset.subset_insert_iff
Finset.subset_empty
Finset.filter_erase
exists_mem_support_mem_erase_mem_support_takeUntil_eq_empty πŸ“–mathematicalFinset.Nonempty
Finset.filter
support
Finset
Finset.instMembership
takeUntil
Finset.erase
Finset.instEmptyCollection
β€”Nat.strong_induction_on
Finset.eq_empty_or_nonempty
Eq.le
length_takeUntil_le
Finset.card_erase_add_one
Finset.mem_of_mem_erase
support_takeUntil_subset
Finset.erase_eq_of_notMem
notMem_support_takeUntil_support_takeUntil_subset
Finset.filter_erase
Finset.erase_right_comm
takeUntil_takeUntil
finite_neighborSet_toSubgraph πŸ“–mathematicalβ€”Set.Finite
SimpleGraph.Subgraph.neighborSet
toSubgraph
β€”toSubgraph.eq_1
SimpleGraph.neighborSet_singletonSubgraph
Set.toFinite
Finite.of_fintype
toSubgraph.eq_2
SimpleGraph.Subgraph.neighborSet_sup
Set.Finite.union
Set.Finite.subset
Finite.Set.finite_insert
SimpleGraph.neighborSet_subgraphOfAdj_subset
map_mapToSubgraph_eq_induce πŸ“–mathematicalSet
Set.instMembership
map
Set.Elem
SimpleGraph.Subgraph.verts
toSubgraph
SimpleGraph.Subgraph.coe
SimpleGraph.induce
SimpleGraph.Adj
SimpleGraph.Subgraph.adj_sub
start_mem_verts_toSubgraph
end_mem_verts_toSubgraph
mapToSubgraph
induce
β€”SimpleGraph.Subgraph.adj_sub
start_mem_verts_toSubgraph
end_mem_verts_toSubgraph
mapToSubgraph.eq_2
SimpleGraph.Hom.map_adj
map_cons
map_map
map_mapToSubgraph_eq_induce_id πŸ“–mathematicalβ€”map
Set.Elem
SimpleGraph.Subgraph.verts
toSubgraph
support
SimpleGraph.Subgraph.coe
SimpleGraph.induce
SimpleGraph.Adj
Set
Set.instMembership
mem_verts_toSubgraph
Subtype.prop
SimpleGraph.Subgraph.adj_sub
start_mem_verts_toSubgraph
end_mem_verts_toSubgraph
mapToSubgraph
induce
β€”map_mapToSubgraph_eq_induce
map_mapToSubgraph_hom πŸ“–mathematicalβ€”map
Set.Elem
SimpleGraph.Subgraph.verts
toSubgraph
SimpleGraph.Subgraph.coe
SimpleGraph.Subgraph.hom
Set
Set.instMembership
start_mem_verts_toSubgraph
end_mem_verts_toSubgraph
mapToSubgraph
β€”start_mem_verts_toSubgraph
end_mem_verts_toSubgraph
mapToSubgraph.eq_2
SimpleGraph.Hom.map_adj
map.eq_2
map_map
mem_edges_toSubgraph πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
SimpleGraph.Subgraph.edgeSet
toSubgraph
edges
β€”SimpleGraph.edgeSet_singletonSubgraph
SimpleGraph.Subgraph.edgeSet_sup
SimpleGraph.edgeSet_subgraphOfAdj
mem_support_of_adj_toSubgraph πŸ“–mathematicalSimpleGraph.Subgraph.Adj
toSubgraph
supportβ€”mem_verts_toSubgraph
SimpleGraph.Subgraph.edge_vert
mem_verts_toSubgraph πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.Subgraph.verts
toSubgraph
support
β€”β€”
not_nil_of_adj_toSubgraph πŸ“–mathematicalSimpleGraph.Subgraph.Adj
toSubgraph
Nilβ€”β€”
start_mem_verts_toSubgraph πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.Subgraph.verts
toSubgraph
β€”β€”
toSubgraph_adj_getVert πŸ“–mathematicallengthSimpleGraph.Subgraph.Adj
toSubgraph
getVert
β€”getVert_zero
zero_add
toSubgraph_adj_iff πŸ“–mathematicalβ€”SimpleGraph.Subgraph.Adj
toSubgraph
getVert
length
β€”toSubgraph.eq_def
getVert_zero
zero_add
Sym2.eq_iff
SimpleGraph.Subgraph.mem_edgeSet
toSubgraph_adj_getVert
toSubgraph_adj_penultimate πŸ“–mathematicalNilSimpleGraph.Subgraph.Adj
toSubgraph
penultimate
β€”not_nil_iff_lt_length
getVert_length
toSubgraph_adj_getVert
toSubgraph_adj_snd πŸ“–mathematicalNilSimpleGraph.Subgraph.Adj
toSubgraph
snd
β€”getVert_zero
zero_add
toSubgraph_adj_getVert
not_nil_iff_lt_length
toSubgraph_append πŸ“–mathematicalβ€”toSubgraph
append
SimpleGraph.Subgraph
SimpleGraph.Subgraph.instMax
β€”sup_of_le_right
verts_toSubgraph
sup_assoc
toSubgraph_bypass_le_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
toSubgraph
bypass
β€”verts_toSubgraph
support_bypass_subset
edges_toPath_subset
toSubgraph_connected πŸ“–mathematicalβ€”SimpleGraph.Subgraph.Connected
toSubgraph
β€”SimpleGraph.Subgraph.singletonSubgraph_connected
SimpleGraph.Subgraph.connected_sup
SimpleGraph.Subgraph.Connected.preconnected
SimpleGraph.Subgraph.subgraphOfAdj_connected
verts_toSubgraph
toSubgraph_cons_nil_eq_subgraphOfAdj πŸ“–mathematicalSimpleGraph.AdjtoSubgraph
cons
nil
SimpleGraph.subgraphOfAdj
β€”sup_of_le_left
toSubgraph_le_iff πŸ“–mathematicalNilSimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
toSubgraph
Set
Sym2
Set.instHasSubset
edgeSet
SimpleGraph.Subgraph.edgeSet
β€”SimpleGraph.Subgraph.edgeSet_mono
mem_edges_toSubgraph
mem_support_iff_exists_mem_edges_of_not_nil
mem_verts_toSubgraph
SimpleGraph.Subgraph.mem_verts_of_mem_edge
toSubgraph_le_induce_support πŸ“–mathematicalβ€”SimpleGraph.Subgraph
Preorder.toLE
PartialOrder.toPreorder
SimpleGraph.Subgraph.instPartialOrder
toSubgraph
SimpleGraph.Subgraph.induce
Top.top
SimpleGraph.Subgraph.instTop
setOf
support
β€”verts_toSubgraph
SimpleGraph.Subgraph.le_induce_top_verts
toSubgraph_map πŸ“–mathematicalβ€”toSubgraph
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
map
SimpleGraph.Subgraph.map
β€”SimpleGraph.map_singletonSubgraph
SimpleGraph.Hom.map_adj
SimpleGraph.Subgraph.map_sup
SimpleGraph.map_subgraphOfAdj
toSubgraph_reverse πŸ“–mathematicalβ€”toSubgraph
reverse
β€”SimpleGraph.symm
reverse_cons
toSubgraph_append
SimpleGraph.subgraphOfAdj_symm
sup_comm
SimpleGraph.Subgraph.ext
Set.ext
sup_of_le_left
toSubgraph_rotate πŸ“–mathematicalsupporttoSubgraph
rotate
β€”rotate.eq_1
toSubgraph_append
sup_comm
take_spec
verts_toSubgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.verts
toSubgraph
setOf
support
β€”Set.ext
mem_verts_toSubgraph

SimpleGraph.Walk.IsCycle

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isCycle_snd_verts_eq πŸ“–mathematicalSimpleGraph.Walk.IsCycle
SimpleGraph.Subgraph.Adj
SimpleGraph.Walk.toSubgraph
SimpleGraph.Walk.snd
SimpleGraph.Subgraph.verts
β€”neighborSet_toSubgraph_endpoint
reverse
SimpleGraph.Walk.getVert_reverse
SimpleGraph.Walk.penultimate.eq_1
SimpleGraph.Walk.toSubgraph_reverse
ncard_neighborSet_toSubgraph_eq_two πŸ“–mathematicalSimpleGraph.Walk.IsCycle
SimpleGraph.Walk.support
Set.ncard
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
β€”SimpleGraph.Walk.getVert_zero
SimpleGraph.Walk.getVert_length
neighborSet_toSubgraph_endpoint
Set.ncard_pair
snd_ne_penultimate
neighborSet_toSubgraph_internal
getVert_sub_one_ne_getVert_add_one
neighborSet_toSubgraph_endpoint πŸ“–mathematicalSimpleGraph.Walk.IsCycleSimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
Set
Set.instInsert
SimpleGraph.Walk.snd
Set.instSingletonSet
SimpleGraph.Walk.penultimate
β€”SimpleGraph.Walk.toSubgraph_adj_snd
not_nil
Set.ext
neighborSet_toSubgraph_internal πŸ“–mathematicalSimpleGraph.Walk.IsCycle
SimpleGraph.Walk.length
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
SimpleGraph.Walk.getVert
Set
Set.instInsert
Set.instSingletonSet
β€”SimpleGraph.Subgraph.Adj.symm
SimpleGraph.Walk.toSubgraph_adj_getVert
Set.ext
getVert_injOn'
Set.mem_setOf_eq
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
getVert_injOn

SimpleGraph.Walk.IsPath

Theorems

NameKindAssumesProvesValidatesDepends On
ncard_neighborSet_toSubgraph_internal_eq_two πŸ“–mathematicalSimpleGraph.Walk.IsPath
SimpleGraph.Walk.length
Set.ncard
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
SimpleGraph.Walk.getVert
β€”neighborSet_toSubgraph_internal
getVert_injOn
Set.mem_setOf_eq
Set.ncard_insert_of_notMem
Set.ncard_singleton
neighborSet_toSubgraph_endpoint πŸ“–mathematicalSimpleGraph.Walk.IsPath
SimpleGraph.Walk.Nil
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
Set
Set.instSingletonSet
SimpleGraph.Walk.penultimate
β€”SimpleGraph.Walk.toSubgraph_reverse
SimpleGraph.Walk.snd_reverse
neighborSet_toSubgraph_startpoint
reverse
SimpleGraph.Walk.not_nil_iff_lt_length
SimpleGraph.Walk.length_reverse
neighborSet_toSubgraph_internal πŸ“–mathematicalSimpleGraph.Walk.IsPath
SimpleGraph.Walk.length
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
SimpleGraph.Walk.getVert
Set
Set.instInsert
Set.instSingletonSet
β€”SimpleGraph.Subgraph.Adj.symm
SimpleGraph.Walk.toSubgraph_adj_getVert
Set.ext
getVert_injOn
Set.mem_setOf_eq
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
neighborSet_toSubgraph_startpoint πŸ“–mathematicalSimpleGraph.Walk.IsPath
SimpleGraph.Walk.Nil
SimpleGraph.Subgraph.neighborSet
SimpleGraph.Walk.toSubgraph
Set
Set.instSingletonSet
SimpleGraph.Walk.snd
β€”SimpleGraph.Walk.toSubgraph_adj_snd
Set.ext
snd_of_toSubgraph_adj πŸ“–mathematicalSimpleGraph.Walk.IsPath
SimpleGraph.Subgraph.Adj
SimpleGraph.Walk.toSubgraph
SimpleGraph.Walk.sndβ€”SimpleGraph.Walk.toSubgraph_adj_iff
getVert_injOn
Set.mem_setOf
SimpleGraph.Walk.getVert_zero
zero_add

---

← Back to Index