Documentation Verification Report

Copy

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Copy.lean

Statistics

MetricCount
DefinitionsCopy, bot, comp, id, induce, instFintypeOfSubtypeHomInjectiveCoe, instFunLike, isoSubgraphMap, isoToSubgraph, mapEdgeSet, mapNeighborSet, ofLE, toEmbedding, toHom, toSubgraph, topEmbedding, toCopy, toCopy, IsContained, IsIndContained, toCopy, coeCopy, copyCount, killCopies, instFintype, labelledCopyCount, Β«term_βŠ‘_Β», Β«term_⊴_Β»
28
Theoremscoe_comp, coe_id, coe_mk, coe_ofLE, coe_toHom, comp_apply, ext, ext_iff, injective, injective', instSubsingletonOfForall, ofLE_comp, ofLE_refl, range_toSubgraph, toHom_apply, toSubgraph_surjOn, topEmbedding_apply, congr_left, congr_right, killCopies_eq_left, bot, congr_left, congr_right, exists_iso_subgraph, mono_left, mono_right, of_exists_iso_subgraph, of_isEmpty, of_le, refl, rfl, trans, trans', trans_le, trans_le', compl, exists_iso_subgraph, isContained, of_compl, of_exists_iso_subgraph, of_isEmpty, refl, rfl, trans, isContained, isIndContained, isIndContained', isIndContained, coe_isContained, bot_isContained_iff_card_le, compl_isIndContained_compl, copyCount_bot, copyCount_eq_card_image_copyToSubgraph, copyCount_eq_zero, copyCount_le_labelledCopyCount, copyCount_of_isEmpty, copyCount_pos, free_bot, free_congr, free_congr_left, free_congr_right, free_killCopies, isContained_congr, isContained_congr_left, isContained_congr_right, isContained_iff_exists_iso_subgraph, isIndContained_iff_exists_iso_subgraph, killCopies_bot, killCopies_def, killCopies_eq_left, killCopies_le_left, labelledCopyCount_eq_zero, labelledCopyCount_of_isEmpty, labelledCopyCount_pos, le_card_edgeFinset_killCopies, le_card_edgeFinset_killCopies_add_copyCount, not_free, top_isIndContained_iff_top_isContained
78
Total106

SimpleGraph

Definitions

NameCategoryTheorems
Copy πŸ“–CompData
14 mathmath: Copy.coe_mk, Copy.topEmbedding_apply, Copy.range_toSubgraph, Copy.toHom_apply, Copy.comp_apply, Copy.ext_iff, Copy.instSubsingletonOfForall, Copy.coe_id, isClique_range_copy_top, Copy.toSubgraph_surjOn, Copy.coe_ofLE, Copy.coe_comp, copyCount_eq_card_image_copyToSubgraph, Copy.coe_toHom
IsContained πŸ“–MathDef
30 mathmath: IsContained.of_extremalNumber_lt_card_edgeFinset, isContained_iff_exists_iso_subgraph, IsContained.trans, isContained_completeEquipartiteGraph_of_colorable, isContained_congr_right, IsContained.mono_left, IsContained.of_le, IsContained.congr_right, not_free, IsIndContained.isContained, top_isIndContained_iff_top_isContained, IsContained.refl, extremalNumber_of_fintypeCard_eq, IsContained.trans_le, IsContained.bot, bot_isContained_iff_card_le, IsContained.of_isEmpty, IsContained.trans_le', copyCount_pos, Iso.isContained, IsContained.rfl, completeBipartiteGraph_isContained_iff, isContained_congr, IsContained.mono_right, labelledCopyCount_pos, IsContained.congr_left, IsContained.of_exists_iso_subgraph, IsContained.trans', isContained_congr_left, Subgraph.coe_isContained
IsIndContained πŸ“–MathDef
13 mathmath: IsIndContained.trans, IsIndContained.rfl, Iso.isIndContained', IsIndContained.of_compl, IsIndContained.of_isEmpty, IsIndContained.of_exists_iso_subgraph, compl_isIndContained_compl, top_isIndContained_iff_top_isContained, IsIndContained.compl, isIndContained_iff_exists_iso_subgraph, Iso.isIndContained, IsIndContained.refl, Subgraph.IsInduced.isIndContained
copyCount πŸ“–CompOp
8 mathmath: copyCount_bot, le_card_edgeFinset_killCopies_add_copyCount, copyCount_pos, le_card_edgeFinset_killCopies, copyCount_eq_zero, copyCount_le_labelledCopyCount, copyCount_of_isEmpty, copyCount_eq_card_image_copyToSubgraph
killCopies πŸ“–CompOp
8 mathmath: killCopies_bot, killCopies_le_left, Free.killCopies_eq_left, le_card_edgeFinset_killCopies_add_copyCount, le_card_edgeFinset_killCopies, free_killCopies, killCopies_eq_left, killCopies_def
labelledCopyCount πŸ“–CompOp
4 mathmath: labelledCopyCount_eq_zero, copyCount_le_labelledCopyCount, labelledCopyCount_pos, labelledCopyCount_of_isEmpty
Β«term_βŠ‘_Β» πŸ“–CompOpβ€”
Β«term_⊴_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
bot_isContained_iff_card_le πŸ“–mathematicalβ€”IsContained
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Fintype.card
β€”Fintype.card_le_of_embedding
Function.Embedding.nonempty_of_card_le
compl_isIndContained_compl πŸ“–mathematicalβ€”IsIndContained
Compl.compl
SimpleGraph
instCompl
β€”Equiv.nonempty_congr
copyCount_bot πŸ“–mathematicalβ€”copyCount
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”copyCount.eq_1
Subgraph.ext
set_fintype_card_eq_univ_iff
Fintype.card_congr
Subgraph.edge_vert
Subgraph.Adj.symm
RelIso.map_rel_iff
Subgraph.Adj.coe
Finset.card_singleton
copyCount_eq_card_image_copyToSubgraph πŸ“–mathematicalβ€”copyCount
Finset.card
Subgraph
Finset.image
Copy
Copy.toSubgraph
Finset.univ
Copy.instFintypeOfSubtypeHomInjectiveCoe
β€”copyCount.eq_1
Finset.coe_injective
Finset.coe_filter
Finset.coe_image
Finset.coe_univ
Set.image_univ
Copy.range_toSubgraph
copyCount_eq_zero πŸ“–mathematicalβ€”copyCount
Free
β€”β€”
copyCount_le_labelledCopyCount πŸ“–mathematicalβ€”copyCount
labelledCopyCount
β€”copyCount_eq_card_image_copyToSubgraph
Finset.card_image_le
copyCount_of_isEmpty πŸ“–mathematicalβ€”copyCountβ€”nonempty_fintype
Finite.of_subsingleton
IsEmpty.instSubsingleton
LE.le.antisymm
LE.le.trans_eq
copyCount_le_labelledCopyCount
labelledCopyCount_of_isEmpty
copyCount_pos
IsContained.of_isEmpty
copyCount_pos πŸ“–mathematicalβ€”copyCount
IsContained
β€”β€”
free_bot πŸ“–mathematicalβ€”Free
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”edgeSet_nonempty
Hom.map_mem_edgeSet
edgeSet_bot
Set.notMem_empty
free_congr πŸ“–mathematicalβ€”Freeβ€”Iff.not
isContained_congr
free_congr_left πŸ“–mathematicalβ€”Freeβ€”free_congr
free_congr_right πŸ“–mathematicalβ€”Freeβ€”free_congr
free_killCopies πŸ“–mathematicalβ€”Free
killCopies
β€”deleteEdges.eq_1
Free.eq_1
isContained_iff_exists_iso_subgraph
sdiff_le
Subgraph.edgeSet_map
Set.Nonempty.image
Set.Nonempty.some_mem
Iso.map_mem_edgeSet_iff
Subgraph.edgeSet_subset
Subgraph.edgeSet_coe
edgeSet_sdiff
edgeSet_fromEdgeSet
edgeSet_sdiff_sdiff_isDiag
Sym2.map_map
Set.mem_singleton_iff
Function.Injective.mem_set_image
Equiv.Set.image_symm_apply
Subgraph.image_coe_edgeSet_coe
isContained_congr πŸ“–mathematicalβ€”IsContainedβ€”IsContained.trans'
IsContained.trans
isContained_congr_left πŸ“–mathematicalβ€”IsContainedβ€”isContained_congr
isContained_congr_right πŸ“–mathematicalβ€”IsContainedβ€”isContained_congr
isContained_iff_exists_iso_subgraph πŸ“–mathematicalβ€”IsContained
Iso
Set.Elem
Subgraph.verts
Subgraph.coe
β€”IsContained.trans'
Subgraph.coe_isContained
isIndContained_iff_exists_iso_subgraph πŸ“–mathematicalβ€”IsIndContained
Subgraph.IsInduced
β€”Set.image_congr
Set.image_univ
RelEmbedding.injective
IsIndContained.trans
Iso.isIndContained
Subgraph.IsInduced.isIndContained
killCopies_bot πŸ“–mathematicalβ€”killCopies
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”killCopies_def
killCopies_def πŸ“–mathematicalβ€”killCopies
SimpleGraph
Bot.bot
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
deleteEdges
Set.iUnion
Sym2
Subgraph
Iso
Set.Elem
Subgraph.verts
Subgraph.coe
Set
Set.instSingletonSet
Set.Nonempty.some
Subgraph.edgeSet
β€”β€”
killCopies_eq_left πŸ“–mathematicalβ€”killCopies
Free
β€”forall_swap
Subgraph.edgeSet_subset
killCopies_le_left πŸ“–mathematicalβ€”SimpleGraph
instLE
killCopies
β€”killCopies_def
le_rfl
deleteEdges_le
labelledCopyCount_eq_zero πŸ“–mathematicalβ€”labelledCopyCount
Free
β€”β€”
labelledCopyCount_of_isEmpty πŸ“–mathematicalβ€”labelledCopyCountβ€”Fintype.card_unique
Copy.instSubsingletonOfForall
Unique.instSubsingleton
labelledCopyCount_pos πŸ“–mathematicalβ€”labelledCopyCount
IsContained
β€”β€”
le_card_edgeFinset_killCopies πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
copyCount
killCopies
killCopies.edgeSet.instFintype
β€”eq_or_ne
Fintype.card_congr'
killCopies_bot
Nat.instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Set.toFinset_card
edgeFinset.eq_1
copyCount.eq_1
Finset.card_subtype
Finset.subtype_univ
Finset.card_univ
Finset.card_image_le
Set.toFinset_range
Finset.le_card_sdiff
Set.toFinset_congr
edgeSet_deleteEdges
Set.iUnion_subtype
Set.iUnion_congr_Prop
Finset.sdiff_eq_inter_compl
Finset.coe_inter
Set.coe_toFinset
Finset.coe_compl
Set.compl_iUnion
Fintype.card_ofFinset
Finset.coe_filter
le_card_edgeFinset_killCopies_add_copyCount πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
killCopies
killCopies.edgeSet.instFintype
copyCount
β€”tsub_le_iff_right
Nat.instOrderedSub
le_card_edgeFinset_killCopies
not_free πŸ“–mathematicalβ€”Free
IsContained
β€”β€”
top_isIndContained_iff_top_isContained πŸ“–mathematicalβ€”IsIndContained
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
IsContained
β€”IsIndContained.isContained

SimpleGraph.Copy

Definitions

NameCategoryTheorems
bot πŸ“–CompOpβ€”
comp πŸ“–CompOp
3 mathmath: comp_apply, ofLE_comp, coe_comp
id πŸ“–CompOp
2 mathmath: coe_id, ofLE_refl
induce πŸ“–CompOpβ€”
instFintypeOfSubtypeHomInjectiveCoe πŸ“–CompOp
1 mathmath: SimpleGraph.copyCount_eq_card_image_copyToSubgraph
instFunLike πŸ“–CompOp
10 mathmath: coe_mk, topEmbedding_apply, toHom_apply, comp_apply, ext_iff, coe_id, SimpleGraph.isClique_range_copy_top, coe_ofLE, coe_comp, coe_toHom
isoSubgraphMap πŸ“–CompOpβ€”
isoToSubgraph πŸ“–CompOpβ€”
mapEdgeSet πŸ“–CompOpβ€”
mapNeighborSet πŸ“–CompOpβ€”
ofLE πŸ“–CompOp
3 mathmath: ofLE_refl, coe_ofLE, ofLE_comp
toEmbedding πŸ“–CompOp
4 mathmath: SimpleGraph.UnitDistEmbedding.iso_p_apply, SimpleGraph.UnitDistEmbedding.embed_p_apply, SimpleGraph.isNClique_map_copy_top, SimpleGraph.UnitDistEmbedding.copy_p_apply
toHom πŸ“–CompOp
4 mathmath: toHom_apply, injective, injective', coe_toHom
toSubgraph πŸ“–CompOp
3 mathmath: range_toSubgraph, toSubgraph_surjOn, SimpleGraph.copyCount_eq_card_image_copyToSubgraph
topEmbedding πŸ“–CompOp
1 mathmath: topEmbedding_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Copy
instFunLike
comp
β€”comp_apply
coe_id πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Copy
instFunLike
id
β€”β€”
coe_mk πŸ“–mathematicalDFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.Copy
instFunLike
β€”β€”
coe_ofLE πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
DFunLike.coe
SimpleGraph.Copy
instFunLike
ofLE
β€”β€”
coe_toHom πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
toHom
SimpleGraph.Copy
instFunLike
β€”β€”
comp_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Copy
instFunLike
comp
β€”RelHom.comp_apply
ext πŸ“–β€”DFunLike.coe
SimpleGraph.Copy
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Copy
instFunLike
β€”ext
injective πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
toHom
β€”injective'
injective' πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
toHom
β€”β€”
instSubsingletonOfForall πŸ“–mathematicalβ€”SimpleGraph.Copyβ€”Function.Injective.subsingleton
DFunLike.coe_injective
ofLE_comp πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
comp
ofLE
LE.le.trans
PartialOrder.toPreorder
SimpleGraph.instPartialOrder
β€”ext
LE.le.trans
comp_apply
ofLE_refl πŸ“–mathematicalβ€”ofLE
le_rfl
SimpleGraph
PartialOrder.toPreorder
SimpleGraph.instPartialOrder
id
β€”ext
le_rfl
range_toSubgraph πŸ“–mathematicalβ€”Set.range
SimpleGraph.Subgraph
SimpleGraph.Copy
toSubgraph
setOf
SimpleGraph.Iso
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
β€”Set.ext
SimpleGraph.Subgraph.hom_injective
RelIso.injective
SimpleGraph.Subgraph.map_comp
SimpleGraph.Subgraph.map_iso_top
SimpleGraph.Subgraph.map_hom_top
toHom_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
toHom
SimpleGraph.Copy
instFunLike
β€”β€”
toSubgraph_surjOn πŸ“–mathematicalβ€”Set.SurjOn
SimpleGraph.Copy
SimpleGraph.Subgraph
toSubgraph
Set.univ
setOf
SimpleGraph.Iso
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
β€”Set.image_univ
range_toSubgraph
topEmbedding_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
SimpleGraph.Adj
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
RelEmbedding.instFunLike
topEmbedding
SimpleGraph.Copy
instFunLike
β€”β€”

SimpleGraph.Embedding

Definitions

NameCategoryTheorems
toCopy πŸ“–CompOp
1 mathmath: SimpleGraph.UnitDistEmbedding.embed_p_apply

SimpleGraph.Free

Theorems

NameKindAssumesProvesValidatesDepends On
congr_left πŸ“–β€”SimpleGraph.Freeβ€”β€”SimpleGraph.free_congr_left
congr_right πŸ“–β€”SimpleGraph.Freeβ€”β€”SimpleGraph.free_congr_right
killCopies_eq_left πŸ“–mathematicalSimpleGraph.FreeSimpleGraph.killCopiesβ€”eq_or_ne
SimpleGraph.killCopies_bot
SimpleGraph.killCopies_eq_left

SimpleGraph.Hom

Definitions

NameCategoryTheorems
toCopy πŸ“–CompOpβ€”

SimpleGraph.IsContained

Theorems

NameKindAssumesProvesValidatesDepends On
bot πŸ“–mathematicalβ€”SimpleGraph.IsContained
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
Fintype.card
β€”SimpleGraph.bot_isContained_iff_card_le
congr_left πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”SimpleGraph.isContained_congr_left
congr_right πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”SimpleGraph.isContained_congr_right
exists_iso_subgraph πŸ“–mathematicalβ€”SimpleGraph.Iso
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
β€”SimpleGraph.isContained_iff_exists_iso_subgraph
mono_left πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsContainedβ€”trans
of_le
mono_right πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsContainedβ€”trans
of_le
of_exists_iso_subgraph πŸ“–mathematicalSimpleGraph.Iso
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
SimpleGraph.IsContainedβ€”SimpleGraph.isContained_iff_exists_iso_subgraph
of_isEmpty πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”β€”
of_le πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsContainedβ€”β€”
refl πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”β€”
rfl πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”refl
trans πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”β€”
trans' πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”trans
trans_le πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsContainedβ€”mono_right
trans_le' πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
SimpleGraph.IsContainedβ€”mono_left

SimpleGraph.IsIndContained

Theorems

NameKindAssumesProvesValidatesDepends On
compl πŸ“–mathematicalβ€”SimpleGraph.IsIndContained
Compl.compl
SimpleGraph
SimpleGraph.instCompl
β€”SimpleGraph.compl_isIndContained_compl
exists_iso_subgraph πŸ“–mathematicalβ€”SimpleGraph.Subgraph.IsInducedβ€”SimpleGraph.isIndContained_iff_exists_iso_subgraph
isContained πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”β€”
of_compl πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”SimpleGraph.compl_isIndContained_compl
of_exists_iso_subgraph πŸ“–mathematicalSimpleGraph.Subgraph.IsInducedSimpleGraph.IsIndContainedβ€”SimpleGraph.isIndContained_iff_exists_iso_subgraph
of_isEmpty πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”β€”
refl πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”β€”
rfl πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”refl
trans πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”β€”

SimpleGraph.Iso

Definitions

NameCategoryTheorems
toCopy πŸ“–CompOp
1 mathmath: SimpleGraph.UnitDistEmbedding.iso_p_apply

Theorems

NameKindAssumesProvesValidatesDepends On
isContained πŸ“–mathematicalβ€”SimpleGraph.IsContainedβ€”β€”
isIndContained πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”β€”
isIndContained' πŸ“–mathematicalβ€”SimpleGraph.IsIndContainedβ€”isIndContained

SimpleGraph.Subgraph

Definitions

NameCategoryTheorems
coeCopy πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_isContained πŸ“–mathematicalβ€”SimpleGraph.IsContained
Set.Elem
verts
coe
β€”β€”

SimpleGraph.Subgraph.IsInduced

Theorems

NameKindAssumesProvesValidatesDepends On
isIndContained πŸ“–mathematicalSimpleGraph.Subgraph.IsInducedSimpleGraph.IsIndContained
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.Subgraph.coe
β€”Subtype.coe_injective
adj

SimpleGraph.killCopies.edgeSet

Definitions

NameCategoryTheorems
instFintype πŸ“–CompOp
2 mathmath: SimpleGraph.le_card_edgeFinset_killCopies_add_copyCount, SimpleGraph.le_card_edgeFinset_killCopies

---

← Back to Index