Documentation Verification Report

Density

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Density.lean

Statistics

MetricCount
DefinitionsedgeDensity, interedges, edgeDensity, interedges
4
Theoremsabs_edgeDensity_sub_edgeDensity_le_one_sub_mul, abs_edgeDensity_sub_edgeDensity_le_two_mul, abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq, card_interedges_add_card_interedges_compl, card_interedges_comm, card_interedges_finpartition, card_interedges_finpartition_left, card_interedges_finpartition_right, card_interedges_le_mul, edgeDensity_add_edgeDensity_compl, edgeDensity_comm, edgeDensity_empty_left, edgeDensity_empty_right, edgeDensity_le_one, edgeDensity_nonneg, edgeDensity_sub_edgeDensity_le_one_sub_mul, interedges_biUnion, interedges_biUnion_left, interedges_biUnion_right, interedges_disjoint_left, interedges_disjoint_right, interedges_empty_left, interedges_eq_biUnion, interedges_mono, mem_interedges_iff, mk_mem_interedges_comm, mk_mem_interedges_iff, mul_edgeDensity_le_edgeDensity, swap_mem_interedges_iff, card_interedges_add_card_interedges_compl, card_interedges_div_card, card_interedges_le_mul, edgeDensity_add_edgeDensity_compl, edgeDensity_comm, edgeDensity_def, edgeDensity_empty_left, edgeDensity_empty_right, edgeDensity_le_one, edgeDensity_nonneg, interedges_biUnion, interedges_biUnion_left, interedges_biUnion_right, interedges_def, interedges_disjoint_left, interedges_disjoint_right, interedges_empty_left, interedges_mono, mem_interedges_iff, mk_mem_interedges_comm, mk_mem_interedges_iff, swap_mem_interedges_iff
51
Total55

Rel

Definitions

NameCategoryTheorems
edgeDensity πŸ“–CompOp
11 mathmath: edgeDensity_empty_right, abs_edgeDensity_sub_edgeDensity_le_two_mul, edgeDensity_add_edgeDensity_compl, mul_edgeDensity_le_edgeDensity, edgeDensity_comm, edgeDensity_empty_left, abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq, abs_edgeDensity_sub_edgeDensity_le_one_sub_mul, edgeDensity_le_one, edgeDensity_sub_edgeDensity_le_one_sub_mul, edgeDensity_nonneg
interedges πŸ“–CompOp
18 mathmath: interedges_biUnion, card_interedges_le_mul, interedges_eq_biUnion, mk_mem_interedges_comm, card_interedges_finpartition, interedges_disjoint_left, interedges_empty_left, card_interedges_finpartition_right, interedges_biUnion_left, mem_interedges_iff, interedges_biUnion_right, mk_mem_interedges_iff, interedges_disjoint_right, card_interedges_finpartition_left, interedges_mono, swap_mem_interedges_iff, card_interedges_add_card_interedges_compl, card_interedges_comm

Theorems

NameKindAssumesProvesValidatesDepends On
abs_edgeDensity_sub_edgeDensity_le_one_sub_mul πŸ“–mathematicalFinset
Finset.instHasSubset
Finset.Nonempty
abs
Rat.instLattice
Rat.addGroup
edgeDensity
Finset.card
β€”abs_sub_le_iff
Rat.instIsOrderedAddMonoid
edgeDensity_sub_edgeDensity_le_one_sub_mul
add_sub_cancel_right
edgeDensity_add_edgeDensity_compl
Finset.Nonempty.mono
sub_sub_sub_cancel_left
abs_edgeDensity_sub_edgeDensity_le_two_mul πŸ“–mathematicalFinset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
AddMonoidWithOne.toNatCast
Finset.card
abs
DivisionRing.toRatCast
edgeDensity
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
lt_or_ge
LE.le.trans
abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq
sub_le_self_iff
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sq_nonneg
AddGroup.existsAddOfLE
IsOrderedRing.toPosMulMono
two_mul
abs_sub
add_le_add
covariant_swap_add_of_covariant_add
le_trans
abs_of_nonneg
Nat.cast_zero
edgeDensity_nonneg
Nat.cast_one
edgeDensity_le_one
abs_edgeDensity_sub_edgeDensity_le_two_mul_sub_sq πŸ“–mathematicalFinset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Preorder.toLT
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
AddGroupWithOne.toAddGroup
AddMonoidWithOne.toNatCast
Finset.card
abs
DivisionRing.toRatCast
edgeDensity
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Nat.instAtLeastTwoHAddOfNat
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sq
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
LE.le.trans
LT.lt.le
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.eq_empty_or_nonempty
interedges_empty_left
Nat.cast_zero
MulZeroClass.zero_mul
div_zero
Rat.cast_zero
Rat.cast_div
Rat.cast_natCast
Rat.cast_mul
LE.le.antisymm
nonpos_of_mul_nonpos_right
IsStrictOrderedRing.toPosMulStrictMono
Finset.card_empty
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Nat.cast_nonneg
sub_self
abs_zero
MulZeroClass.mul_zero
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Rat.cast_le
abs_edgeDensity_sub_edgeDensity_le_one_sub_mul
Rat.cast_sub
Rat.cast_one
Finset.Nonempty.mono
sub_le_sub_left
mul_le_mul
IsOrderedRing.toPosMulMono
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Finset.Nonempty.card_pos
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Nat.cast_pos'
NeZero.charZero_one
card_interedges_add_card_interedges_compl πŸ“–mathematicalβ€”Finset.card
interedges
β€”Finset.card_product
interedges.eq_1
Finset.card_union_of_disjoint
Finset.disjoint_filter
Finset.filter_union_filter_not_eq
card_interedges_comm πŸ“–mathematicalSymmetricFinset.card
interedges
β€”Finset.card_bij
swap_mem_interedges_iff
Prod.swap_injective
card_interedges_finpartition πŸ“–mathematicalβ€”Finset.card
interedges
Finset.sum
Finset
Nat.instAddCommMonoid
SProd.sprod
Finset.instSProd
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
β€”card_interedges_finpartition_left
Finset.sum_product
card_interedges_finpartition_right
card_interedges_finpartition_left πŸ“–mathematicalβ€”Finset.card
interedges
Finset.sum
Finset
Nat.instAddCommMonoid
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
β€”interedges.congr_simp
Finpartition.biUnion_parts
interedges_biUnion_left
Finset.card_biUnion
interedges_disjoint_left
Finpartition.disjoint
card_interedges_finpartition_right πŸ“–mathematicalβ€”Finset.card
interedges
Finset.sum
Finset
Nat.instAddCommMonoid
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
β€”interedges.congr_simp
Finpartition.biUnion_parts
interedges_biUnion_right
Finset.card_biUnion
interedges_disjoint_right
Finpartition.disjoint
card_interedges_le_mul πŸ“–mathematicalβ€”Finset.card
interedges
β€”LE.le.trans
Finset.card_filter_le
Eq.le
Finset.card_product
edgeDensity_add_edgeDensity_compl πŸ“–mathematicalFinset.NonemptyedgeDensityβ€”edgeDensity.eq_1
add_div
div_eq_one_iff_eq
Nat.cast_zero
Rat.instCharZero
LT.lt.ne'
mul_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Finset.Nonempty.card_pos
card_interedges_add_card_interedges_compl
edgeDensity_comm πŸ“–mathematicalSymmetricedgeDensityβ€”edgeDensity.eq_1
mul_comm
card_interedges_comm
edgeDensity_empty_left πŸ“–mathematicalβ€”edgeDensity
Finset
Finset.instEmptyCollection
β€”edgeDensity.eq_1
Finset.card_empty
Nat.cast_zero
MulZeroClass.zero_mul
div_zero
edgeDensity_empty_right πŸ“–mathematicalβ€”edgeDensity
Finset
Finset.instEmptyCollection
β€”edgeDensity.eq_1
Finset.card_empty
Nat.cast_zero
MulZeroClass.mul_zero
div_zero
edgeDensity_le_one πŸ“–mathematicalβ€”edgeDensityβ€”div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instIsStrictOrderedRing
Rat.instZeroLEOneClass
Rat.instAddLeftMono
Rat.instCharZero
card_interedges_le_mul
Nat.cast_zero
edgeDensity_nonneg πŸ“–mathematicalβ€”edgeDensityβ€”div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_zero
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Rat.instCharZero
edgeDensity_sub_edgeDensity_le_one_sub_mul πŸ“–mathematicalFinset
Finset.instHasSubset
Finset.Nonempty
edgeDensity
Finset.card
β€”LE.le.trans
sub_le_sub_left
Rat.instAddLeftMono
covariant_swap_add_of_covariant_add
mul_edgeDensity_le_edgeDensity
le_trans
sub_mul
one_mul
le_refl
mul_le_of_le_one_right
Rat.instPosMulMono
sub_nonneg_of_le
mul_le_oneβ‚€
IsOrderedRing.toMulPosMono
IsStrictOrderedRing.toIsOrderedRing
Rat.instIsStrictOrderedRing
div_le_one_of_leβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Rat.instZeroLEOneClass
Nat.cast_le
Rat.instCharZero
Finset.card_le_card
Nat.cast_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_zero
edgeDensity_le_one
interedges_biUnion πŸ“–mathematicalβ€”interedges
Finset.biUnion
SProd.sprod
Finset
Finset.instSProd
β€”Finset.product_biUnion
interedges_biUnion_left
interedges_biUnion_right
interedges_biUnion_left πŸ“–mathematicalβ€”interedges
Finset.biUnion
β€”Finset.ext
interedges_biUnion_right πŸ“–mathematicalβ€”interedges
Finset.biUnion
β€”Finset.ext
interedges_disjoint_left πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
interedgesβ€”Finset.disjoint_left
mem_interedges_iff
interedges_disjoint_right πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
interedgesβ€”Finset.disjoint_left
mem_interedges_iff
interedges_empty_left πŸ“–mathematicalβ€”interedges
Finset
Finset.instEmptyCollection
β€”interedges.eq_1
Finset.empty_product
Finset.filter_empty
interedges_eq_biUnion πŸ“–mathematicalβ€”interedges
Finset.biUnion
Finset.map
Prod.mk_right_injective
Finset.filter
β€”Finset.ext
Prod.mk_right_injective
interedges_mono πŸ“–mathematicalFinset
Finset.instHasSubset
interedgesβ€”β€”
mem_interedges_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
β€”interedges.eq_1
Finset.mem_filter
Finset.mem_product
mk_mem_interedges_comm πŸ“–mathematicalSymmetricFinset
Finset.instMembership
interedges
β€”swap_mem_interedges_iff
mk_mem_interedges_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
β€”mem_interedges_iff
mul_edgeDensity_le_edgeDensity πŸ“–mathematicalFinset
Finset.instHasSubset
Finset.Nonempty
Finset.card
edgeDensity
β€”IsStrictOrderedRing.noZeroDivisors
Rat.instIsStrictOrderedRing
AddGroup.existsAddOfLE
Rat.instCharZero
Finset.Nonempty.ne_empty
edgeDensity.eq_1
div_mul_div_comm
mul_comm
div_mul_div_cancelβ‚€
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.mono_cast
Rat.instAddLeftMono
Rat.instZeroLEOneClass
Finset.card_le_card
interedges_mono
mul_nonneg
Rat.instPosMulMono
Nat.cast_nonneg'
swap_mem_interedges_iff πŸ“–mathematicalSymmetricFinset
Finset.instMembership
interedges
β€”mem_interedges_iff
Symmetric.iff

SimpleGraph

Definitions

NameCategoryTheorems
edgeDensity πŸ“–CompOp
17 mathmath: edgeDensity_le_one, edgeDensity_def, SzemerediRegularity.le_sum_distinctPairs_edgeDensity_sq, regularityReduced_adj, edgeDensity_empty_right, nonuniformWitnesses_spec, SzemerediRegularity.edgeDensity_chunk_uniform, not_isUniform_iff, Finpartition.coe_energy, edgeDensity_empty_left, nonuniformWitness_spec, Finpartition.mk_mem_sparsePairs, SzemerediRegularity.edgeDensity_chunk_not_uniform, card_interedges_div_card, edgeDensity_add_edgeDensity_compl, edgeDensity_nonneg, edgeDensity_comm
interedges πŸ“–CompOp
19 mathmath: edgeDensity_def, interedges_mono, card_interedges_add_card_interedges_compl, interedges_disjoint_left, interedges_empty_left, Finpartition.IsEquipartition.card_interedges_sparsePairs_le, card_interedges_le_mul, interedges_def, mk_mem_interedges_iff, unreduced_edges_subset, interedges_disjoint_right, swap_mem_interedges_iff, mem_interedges_iff, mk_mem_interedges_comm, card_interedges_div_card, interedges_biUnion, interedges_biUnion_left, interedges_biUnion_right, Finpartition.IsEquipartition.card_interedges_sparsePairs_le'

Theorems

NameKindAssumesProvesValidatesDepends On
card_interedges_add_card_interedges_compl πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Finset.card
interedges
Compl.compl
SimpleGraph
instCompl
Compl.adjDecidable
β€”Finset.card_product
interedges_def
Finset.filter_congr
compl_adj
Disjoint.forall_ne_finset
Finset.mem_product
Finset.card_union_of_disjoint
Finset.disjoint_filter
Finset.filter_union_filter_not_eq
card_interedges_div_card πŸ“–mathematicalβ€”Finset.card
interedges
edgeDensity
β€”β€”
card_interedges_le_mul πŸ“–mathematicalβ€”Finset.card
interedges
β€”Rel.card_interedges_le_mul
edgeDensity_add_edgeDensity_compl πŸ“–mathematicalFinset.Nonempty
Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
edgeDensity
Compl.compl
SimpleGraph
instCompl
Compl.adjDecidable
β€”edgeDensity_def
add_div
div_eq_one_iff_eq
ne_of_gt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Rat.instIsStrictOrderedRing
Nat.cast_pos'
Rat.instAddLeftMono
Rat.instZeroLEOneClass
NeZero.charZero_one
Rat.instCharZero
Finset.Nonempty.card_pos
card_interedges_add_card_interedges_compl
edgeDensity_comm πŸ“–mathematicalβ€”edgeDensityβ€”Rel.edgeDensity_comm
symm
edgeDensity_def πŸ“–mathematicalβ€”edgeDensity
Finset.card
interedges
β€”β€”
edgeDensity_empty_left πŸ“–mathematicalβ€”edgeDensity
Finset
Finset.instEmptyCollection
β€”Rel.edgeDensity_empty_left
edgeDensity_empty_right πŸ“–mathematicalβ€”edgeDensity
Finset
Finset.instEmptyCollection
β€”Rel.edgeDensity_empty_right
edgeDensity_le_one πŸ“–mathematicalβ€”edgeDensityβ€”Rel.edgeDensity_le_one
edgeDensity_nonneg πŸ“–mathematicalβ€”edgeDensityβ€”Rel.edgeDensity_nonneg
interedges_biUnion πŸ“–mathematicalβ€”interedges
Finset.biUnion
SProd.sprod
Finset
Finset.instSProd
β€”Rel.interedges_biUnion
interedges_biUnion_left πŸ“–mathematicalβ€”interedges
Finset.biUnion
β€”Rel.interedges_biUnion_left
interedges_biUnion_right πŸ“–mathematicalβ€”interedges
Finset.biUnion
β€”Rel.interedges_biUnion_right
interedges_def πŸ“–mathematicalβ€”interedges
Finset.filter
Adj
SProd.sprod
Finset
Finset.instSProd
β€”β€”
interedges_disjoint_left πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
interedgesβ€”Rel.interedges_disjoint_left
interedges_disjoint_right πŸ“–mathematicalDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
interedgesβ€”Rel.interedges_disjoint_right
interedges_empty_left πŸ“–mathematicalβ€”interedges
Finset
Finset.instEmptyCollection
β€”Rel.interedges_empty_left
interedges_mono πŸ“–mathematicalFinset
Finset.instHasSubset
interedgesβ€”Rel.interedges_mono
mem_interedges_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
Adj
β€”Rel.mem_interedges_iff
mk_mem_interedges_comm πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
β€”Rel.mk_mem_interedges_comm
symm
mk_mem_interedges_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
Adj
β€”Rel.mk_mem_interedges_iff
swap_mem_interedges_iff πŸ“–mathematicalβ€”Finset
Finset.instMembership
interedges
β€”Rel.swap_mem_interedges_iff
symm

---

← Back to Index