Documentation Verification Report

Diam

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Diam.lean

Statistics

MetricCount
Definitionscenter, diam, eccent, ediam, radius
5
Theoremscenter_bot, center_eq_univ_iff_radius_eq_ediam, center_eq_univ_of_subsingleton, center_nonempty, center_top, connected_iff_diam_ne_zero, connected_iff_ediam_ne_top, connected_of_ediam_ne_top, diam_anti_of_ediam_ne_top, diam_bot, diam_def, diam_eq_one, diam_eq_zero, diam_eq_zero_iff_ediam_eq_top, diam_eq_zero_of_ediam_eq_top, diam_eq_zero_of_not_connected, diam_ne_zero_of_ediam_ne_top, diam_top, dist_le_diam, eccent_bot, eccent_def, eccent_eq_one_iff, eccent_eq_top_of_not_connected, eccent_eq_zero_iff, eccent_eq_zero_of_subsingleton, eccent_le_ediam, eccent_le_iff, eccent_le_one_iff, eccent_ne_zero, eccent_pos_iff, eccent_top, ediam_anti, ediam_bot, ediam_def, ediam_eq_iSup_iSup_edist, ediam_eq_one, ediam_eq_top, ediam_eq_top_of_not_connected, ediam_eq_top_of_not_preconnected, ediam_eq_zero_iff_subsingleton, ediam_eq_zero_of_subsingleton, ediam_le_iff, ediam_le_of_edist_le, ediam_le_two_mul_radius, ediam_ne_top_of_diam_ne_zero, ediam_ne_zero, ediam_ne_zero_iff_nontrivial, ediam_top, edist_le_eccent, edist_le_ediam, eq_top_iff_forall_eccent_eq_one, exists_dist_eq_diam, exists_eccent_eq_ediam_of_finite, exists_eccent_eq_ediam_of_ne_top, exists_eccent_eq_radius, exists_edist_eq_eccent_of_finite, exists_edist_eq_ediam_of_finite, exists_edist_eq_ediam_of_ne_top, exists_edist_eq_radius_of_finite, mem_center_iff, nontrivial_of_diam_ne_zero, nontrivial_of_ediam_ne_zero, preconnected_of_ediam_ne_top, radius_bot, radius_eq_ediam_iff, radius_eq_iInf_iSup_edist, radius_eq_top_of_isEmpty, radius_eq_top_of_not_connected, radius_eq_zero_iff, radius_le_eccent, radius_le_ediam, radius_ne_top_iff, radius_ne_zero_of_nontrivial, radius_top, subsingleton_of_ediam_eq_zero
75
Total80

SimpleGraph

Definitions

NameCategoryTheorems
center πŸ“–CompOp
6 mathmath: center_bot, center_eq_univ_of_subsingleton, center_nonempty, mem_center_iff, center_eq_univ_iff_radius_eq_ediam, center_top
diam πŸ“–CompOp
11 mathmath: diam_eq_zero_iff_ediam_eq_top, diam_eq_zero_of_ediam_eq_top, dist_le_diam, diam_eq_one, diam_bot, diam_def, diam_top, diam_anti_of_ediam_ne_top, exists_dist_eq_diam, diam_eq_zero_of_not_connected, diam_eq_zero
eccent πŸ“–CompOp
20 mathmath: eccent_bot, exists_eccent_eq_ediam_of_finite, eccent_eq_top_of_not_connected, eccent_le_one_iff, eccent_eq_zero_iff, exists_edist_eq_eccent_of_finite, eccent_eq_one_iff, mem_center_iff, edist_le_eccent, eccent_le_ediam, eccent_pos_iff, radius_eq_ediam_iff, eq_top_iff_forall_eccent_eq_one, eccent_le_iff, exists_eccent_eq_ediam_of_ne_top, radius_le_eccent, exists_eccent_eq_radius, eccent_def, eccent_eq_zero_of_subsingleton, eccent_top
ediam πŸ“–CompOp
25 mathmath: ediam_le_iff, ediam_anti, exists_edist_eq_ediam_of_ne_top, diam_eq_zero_iff_ediam_eq_top, exists_eccent_eq_ediam_of_finite, ediam_eq_top, ediam_top, ediam_eq_one, ediam_eq_zero_of_subsingleton, center_eq_univ_iff_radius_eq_ediam, ediam_le_two_mul_radius, eccent_le_ediam, ediam_eq_iSup_iSup_edist, radius_eq_ediam_iff, ediam_eq_zero_iff_subsingleton, ediam_eq_top_of_not_connected, edist_le_ediam, ediam_le_of_edist_le, radius_le_ediam, ediam_eq_top_of_not_preconnected, ediam_def, exists_eccent_eq_ediam_of_ne_top, diam_eq_zero, ediam_bot, exists_edist_eq_ediam_of_finite
radius πŸ“–CompOp
14 mathmath: radius_eq_zero_iff, exists_edist_eq_radius_of_finite, mem_center_iff, center_eq_univ_iff_radius_eq_ediam, ediam_le_two_mul_radius, radius_eq_ediam_iff, radius_le_ediam, radius_le_eccent, radius_eq_top_of_not_connected, radius_top, radius_bot, radius_eq_top_of_isEmpty, exists_eccent_eq_radius, radius_eq_iInf_iSup_edist

Theorems

NameKindAssumesProvesValidatesDepends On
center_bot πŸ“–mathematicalβ€”center
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set.univ
β€”subsingleton_or_nontrivial
center_eq_univ_of_subsingleton
Set.eq_univ_iff_forall
mem_center_iff
eccent_bot
radius_bot
center_eq_univ_iff_radius_eq_ediam πŸ“–mathematicalβ€”center
Set.univ
radius
ediam
β€”radius_eq_ediam_iff
Set.univ_subset_iff
mem_center_iff
le_antisymm
le_iInf
Eq.ge
radius_le_eccent
center_eq_univ_of_subsingleton πŸ“–mathematicalβ€”center
Set.univ
β€”Set.eq_univ_iff_forall
mem_center_iff
eccent_eq_zero_of_subsingleton
radius_eq_zero_iff
center_nonempty πŸ“–mathematicalβ€”Set.Nonempty
center
β€”exists_eccent_eq_radius
center_top πŸ“–mathematicalβ€”center
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set.univ
β€”subsingleton_or_nontrivial
center_eq_univ_of_subsingleton
Set.eq_univ_iff_forall
mem_center_iff
eccent_top
radius_top
connected_iff_diam_ne_zero πŸ“–mathematicalβ€”Connectedβ€”connected_iff_ediam_ne_top
Nontrivial.to_nonempty
not_iff_not
diam_eq_zero_iff_ediam_eq_top
connected_iff_ediam_ne_top πŸ“–mathematicalβ€”Connectedβ€”exists_edist_eq_ediam_of_finite
edist_ne_top_iff_reachable
Connected.preconnected
connected_of_ediam_ne_top
connected_of_ediam_ne_top πŸ“–mathematicalβ€”Connectedβ€”connected_iff
preconnected_of_ediam_ne_top
diam_anti_of_ediam_ne_top πŸ“–mathematicalSimpleGraph
instLE
diamβ€”ENat.toNat_le_toNat
ediam_anti
diam_bot πŸ“–mathematicalβ€”diam
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”diam.eq_1
ENat.toNat_eq_zero
subsingleton_or_nontrivial
ediam_eq_zero_of_subsingleton
ediam_bot
diam_def πŸ“–mathematicalβ€”diam
ENat.toNat
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
β€”diam.eq_1
ediam_def
diam_eq_one πŸ“–mathematicalβ€”diam
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”diam.eq_1
ENat.toNat_eq_iff
one_ne_zero
Nat.cast_one
ediam_eq_one
diam_eq_zero πŸ“–mathematicalβ€”diam
ediam
Top.top
ENat
instTopENat
β€”diam.eq_1
ENat.toNat_eq_zero
ediam_eq_zero_iff_subsingleton
diam_eq_zero_iff_ediam_eq_top πŸ“–mathematicalβ€”diam
ediam
Top.top
ENat
instTopENat
β€”not_iff_not
ediam_ne_top_of_diam_ne_zero
diam_ne_zero_of_ediam_ne_top
diam_eq_zero_of_ediam_eq_top πŸ“–mathematicalediam
Top.top
ENat
instTopENat
diamβ€”diam.eq_1
ENat.toNat_top
diam_eq_zero_of_not_connected πŸ“–mathematicalConnecteddiamβ€”isEmpty_or_nonempty
diam.eq_1
ediam.eq_1
ciSup_of_empty
bot_eq_zero'
ediam_eq_top_of_not_connected
ENat.toNat_top
diam_ne_zero_of_ediam_ne_top πŸ“–β€”β€”β€”β€”exists_pair_ne
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
lt_of_lt_of_le
Connected.pos_dist_of_ne
connected_of_ediam_ne_top
Nontrivial.to_nonempty
dist_le_diam
diam_top πŸ“–mathematicalβ€”diam
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”diam.eq_1
ediam_top
ENat.toNat_one
dist_le_diam πŸ“–mathematicalβ€”dist
diam
β€”ENat.toNat_le_toNat
edist_le_ediam
eccent_bot πŸ“–mathematicalβ€”eccent
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.top
ENat
instTopENat
β€”eccent_eq_top_of_not_connected
not_connected_bot
eccent_def πŸ“–mathematicalβ€”eccent
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
β€”β€”
eccent_eq_one_iff πŸ“–mathematicalβ€”eccent
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Adj
β€”ENat.one_le_iff_ne_zero
eccent_ne_zero
LE.le.ge_iff_eq'
eccent_le_one_iff
eccent_eq_top_of_not_connected πŸ“–mathematicalConnectedeccent
Top.top
ENat
instTopENat
β€”Mathlib.Tactic.Push.not_forall_eq
connected_iff_exists_forall_reachable
eq_top_iff
edist_eq_top_of_not_reachable
le_iSup
eccent_eq_zero_iff πŸ“–mathematicalβ€”eccent
ENat
instZeroENat
β€”Mathlib.Tactic.Contrapose.contrapose₁
eccent_ne_zero
eccent_eq_zero_of_subsingleton
eccent_eq_zero_of_subsingleton πŸ“–mathematicalβ€”eccent
ENat
instZeroENat
β€”subsingleton_iff
eccent_le_ediam πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
eccent
ediam
β€”le_iSup
eccent_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
eccent
edist
β€”iSup_le_iff
eccent_le_one_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
eccent
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Adj
β€”LE.le.trans
edist_le_eccent
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
edist_pos_of_ne
edist_eq_one_iff_adj
le_antisymm
eccent_le_iff
edist_le_one_iff_adj_or_eq
eccent_ne_zero πŸ“–β€”β€”β€”β€”exists_ne
Mathlib.Tactic.Contrapose.contraposeβ‚„
eccent_pos_iff πŸ“–mathematicalβ€”ENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
instZeroENat
eccent
Nontrivial
β€”pos_iff_ne_zero
not_subsingleton_iff_nontrivial
eccent_eq_zero_iff
eccent_top πŸ“–mathematicalβ€”eccent
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”le_antisymm
eccent.eq_1
iSup_le_iff
eq_or_ne
edist_self
edist_top_of_ne
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
pos_iff_ne_zero
eccent_ne_zero
ediam_anti πŸ“–mathematicalSimpleGraph
instLE
ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ediam
β€”iSupβ‚‚_mono
edist_anti
ediam_bot πŸ“–mathematicalβ€”ediam
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.top
ENat
instTopENat
β€”ediam_eq_top_of_not_connected
Nontrivial.to_nonempty
not_connected_bot
ediam_def πŸ“–mathematicalβ€”ediam
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
β€”ediam.eq_1
eccent_def
iSup_prod
ediam_eq_iSup_iSup_edist πŸ“–mathematicalβ€”ediam
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
β€”β€”
ediam_eq_one πŸ“–mathematicalβ€”ediam
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”eq_top_iff_forall_eccent_eq_one
le_antisymm
eccent_le_ediam
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
pos_iff_ne_zero
eccent_ne_zero
ediam_top
ediam_eq_top πŸ“–mathematicalβ€”ediam
Top.top
ENat
instTopENat
Preorder.toLT
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
β€”β€”
ediam_eq_top_of_not_connected πŸ“–mathematicalConnectedediam
Top.top
ENat
instTopENat
β€”Mathlib.Tactic.Push.not_forall_eq
connected_iff_exists_forall_reachable
eq_top_iff
edist_eq_top_of_not_reachable
edist_le_ediam
ediam_eq_top_of_not_preconnected πŸ“–mathematicalPreconnectedediam
Top.top
ENat
instTopENat
β€”isEmpty_or_nonempty
IsEmpty.forall_iff
ediam_eq_top_of_not_connected
connected_iff
ediam_eq_zero_iff_subsingleton πŸ“–mathematicalβ€”ediam
ENat
instZeroENat
β€”subsingleton_of_ediam_eq_zero
ediam_eq_zero_of_subsingleton
ediam_eq_zero_of_subsingleton πŸ“–mathematicalβ€”ediam
ENat
instZeroENat
β€”ediam_def
ENat.iSup_eq_zero
subsingleton_iff
ediam_le_iff πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ediam
edist
β€”iSupβ‚‚_le_iff
ediam_le_of_edist_le πŸ“–mathematicalENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
ediamβ€”iSupβ‚‚_le
ediam_le_two_mul_radius πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
ediam
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
radius
β€”isEmpty_or_nonempty
Nat.instAtLeastTwoHAddOfNat
radius_eq_top_of_isEmpty
le_top
exists_eccent_eq_radius
exists_edist_eq_ediam_of_ne_top
connected_iff_ediam_ne_top
le_trans
edist_triangle
two_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
edist_le_eccent
edist_comm
radius_eq_top_of_not_connected
ediam_ne_top_of_diam_ne_zero πŸ“–β€”β€”β€”β€”diam_eq_zero_of_ediam_eq_top
ediam_ne_zero πŸ“–β€”β€”β€”β€”exists_pair_ne
Mathlib.Tactic.Contrapose.contraposeβ‚„
ediam_ne_zero_iff_nontrivial πŸ“–mathematicalβ€”Nontrivialβ€”nontrivial_of_ediam_ne_zero
ediam_ne_zero
ediam_top πŸ“–mathematicalβ€”ediam
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eccent_top
ciSup_const
Nontrivial.to_nonempty
edist_le_eccent πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
eccent
β€”le_iSup
edist_le_ediam πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
ediam
β€”le_iSupβ‚‚
eq_top_iff_forall_eccent_eq_one πŸ“–mathematicalβ€”Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
eccent
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eccent_top
ext
Adj.ne
edist_eq_one_iff_adj
le_antisymm
edist_le_eccent
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
pos_iff_ne_zero
Iff.ne
edist_eq_zero_iff
exists_dist_eq_diam πŸ“–mathematicalβ€”dist
diam
β€”exists_edist_eq_ediam_of_ne_top
ediam_ne_top_of_diam_ne_zero
diam.eq_1
dist.eq_1
exists_eccent_eq_ediam_of_finite πŸ“–mathematicalβ€”eccent
ediam
β€”exists_eq_ciSup_of_finite
exists_eccent_eq_ediam_of_ne_top πŸ“–mathematicalβ€”eccent
ediam
β€”ENat.exists_eq_iSup_of_lt_top
Ne.lt_top
exists_eccent_eq_radius πŸ“–mathematicalβ€”eccent
radius
β€”ENat.exists_eq_iInf
exists_edist_eq_eccent_of_finite πŸ“–mathematicalβ€”edist
eccent
β€”exists_eq_ciSup_of_finite
exists_edist_eq_ediam_of_finite πŸ“–mathematicalβ€”edist
ediam
β€”Prod.exists'
exists_eq_ciSup_of_finite
Finite.instProd
ediam_def
exists_edist_eq_ediam_of_ne_top πŸ“–mathematicalβ€”edist
ediam
β€”ENat.exists_eq_iSupβ‚‚_of_lt_top
Ne.lt_top
exists_edist_eq_radius_of_finite πŸ“–mathematicalβ€”edist
radius
β€”exists_eccent_eq_radius
exists_edist_eq_eccent_of_finite
mem_center_iff πŸ“–mathematicalβ€”Set
Set.instMembership
center
eccent
radius
β€”β€”
nontrivial_of_diam_ne_zero πŸ“–mathematicalβ€”Nontrivialβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
nontrivial_of_ediam_ne_zero πŸ“–mathematicalβ€”Nontrivialβ€”Mathlib.Tactic.Contrapose.contraposeβ‚‚
ediam_eq_zero_of_subsingleton
preconnected_of_ediam_ne_top πŸ“–mathematicalβ€”Preconnectedβ€”Not.imp_symm
ediam_eq_top_of_not_preconnected
radius_bot πŸ“–mathematicalβ€”radius
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.top
ENat
instTopENat
β€”radius_eq_top_of_not_connected
not_connected_bot
radius_eq_ediam_iff πŸ“–mathematicalβ€”radius
ediam
eccent
β€”le_antisymm
eccent_le_ediam
radius_le_eccent
iSup_le
Eq.le
le_iInf
Eq.ge
radius_eq_iInf_iSup_edist πŸ“–mathematicalβ€”radius
iInf
ENat
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
edist
β€”β€”
radius_eq_top_of_isEmpty πŸ“–mathematicalβ€”radius
Top.top
ENat
instTopENat
β€”iInf_of_empty
radius_eq_top_of_not_connected πŸ“–mathematicalConnectedradius
Top.top
ENat
instTopENat
β€”eccent_eq_top_of_not_connected
iInf_top
radius_eq_zero_iff πŸ“–mathematicalβ€”radius
ENat
instZeroENat
β€”Mathlib.Tactic.Contrapose.contrapose₁
radius.eq_1
ENat.iInf_eq_zero
radius_le_eccent πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
radius
eccent
β€”iInf_le
radius_le_ediam πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
radius
ediam
β€”iInf_le_iSup
radius_ne_top_iff πŸ“–mathematicalβ€”Connectedβ€”Not.imp_symm
radius_eq_top_of_not_connected
exists_edist_eq_radius_of_finite
edist_ne_top_iff_reachable
Connected.preconnected
radius_ne_zero_of_nontrivial πŸ“–β€”β€”β€”β€”ENat.one_le_iff_ne_zero
le_iInf
eccent_ne_zero
radius_top πŸ“–mathematicalβ€”radius
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
ENat
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”eccent_top
ciInf_const
Nontrivial.to_nonempty
subsingleton_of_ediam_eq_zero πŸ“–β€”ediam
ENat
instZeroENat
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
ediam_ne_zero

---

← Back to Index