π Source: Mathlib/Combinatorics/SimpleGraph/Diam.lean
center
diam
eccent
ediam
radius
center_bot
center_eq_univ_iff_radius_eq_ediam
center_eq_univ_of_subsingleton
center_nonempty
center_top
connected_iff_diam_ne_zero
connected_iff_ediam_ne_top
connected_of_ediam_ne_top
diam_anti_of_ediam_ne_top
diam_bot
diam_def
diam_eq_one
diam_eq_zero
diam_eq_zero_iff_ediam_eq_top
diam_eq_zero_of_ediam_eq_top
diam_eq_zero_of_not_connected
diam_ne_zero_of_ediam_ne_top
diam_top
dist_le_diam
eccent_bot
eccent_def
eccent_eq_one_iff
eccent_eq_top_of_not_connected
eccent_eq_zero_iff
eccent_eq_zero_of_subsingleton
eccent_le_ediam
eccent_le_iff
eccent_le_one_iff
eccent_ne_zero
eccent_pos_iff
eccent_top
ediam_anti
ediam_bot
ediam_def
ediam_eq_iSup_iSup_edist
ediam_eq_one
ediam_eq_top
ediam_eq_top_of_not_connected
ediam_eq_top_of_not_preconnected
ediam_eq_zero_iff_subsingleton
ediam_eq_zero_of_subsingleton
ediam_le_iff
ediam_le_of_edist_le
ediam_le_two_mul_radius
ediam_ne_top_of_diam_ne_zero
ediam_ne_zero
ediam_ne_zero_iff_nontrivial
ediam_top
edist_le_eccent
edist_le_ediam
eq_top_iff_forall_eccent_eq_one
exists_dist_eq_diam
exists_eccent_eq_ediam_of_finite
exists_eccent_eq_ediam_of_ne_top
exists_eccent_eq_radius
exists_edist_eq_eccent_of_finite
exists_edist_eq_ediam_of_finite
exists_edist_eq_ediam_of_ne_top
exists_edist_eq_radius_of_finite
mem_center_iff
nontrivial_of_diam_ne_zero
nontrivial_of_ediam_ne_zero
preconnected_of_ediam_ne_top
radius_bot
radius_eq_ediam_iff
radius_eq_iInf_iSup_edist
radius_eq_top_of_isEmpty
radius_eq_top_of_not_connected
radius_eq_zero_iff
radius_le_eccent
radius_le_ediam
radius_ne_top_iff
radius_ne_zero_of_nontrivial
radius_top
subsingleton_of_ediam_eq_zero
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Set.univ
subsingleton_or_nontrivial
Set.eq_univ_iff_forall
Set.univ_subset_iff
le_antisymm
le_iInf
Eq.ge
Set.Nonempty
Top.top
BooleanAlgebra.toTop
Connected
Nontrivial.to_nonempty
not_iff_not
edist_ne_top_iff_reachable
Connected.preconnected
connected_iff
instLE
ENat.toNat_le_toNat
diam.eq_1
ENat.toNat_eq_zero
ENat.toNat
iSup
ENat
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
edist
ENat.toNat_eq_iff
one_ne_zero
Nat.cast_one
instTopENat
ENat.toNat_top
isEmpty_or_nonempty
ediam.eq_1
ciSup_of_empty
bot_eq_zero'
exists_pair_ne
pos_iff_ne_zero
Nat.instCanonicallyOrderedAdd
lt_of_lt_of_le
Connected.pos_dist_of_ne
ENat.toNat_one
dist
not_connected_bot
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
Adj
ENat.one_le_iff_ne_zero
LE.le.ge_iff_eq'
Mathlib.Tactic.Push.not_forall_eq
connected_iff_exists_forall_reachable
eq_top_iff
edist_eq_top_of_not_reachable
le_iSup
instZeroENat
Mathlib.Tactic.Contrapose.contraposeβ
subsingleton_iff
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
iSup_le_iff
LE.le.trans
Order.one_le_iff_pos
IsOrderedRing.toZeroLEOneClass
NeZero.one
edist_pos_of_ne
edist_eq_one_iff_adj
edist_le_one_iff_adj_or_eq
exists_ne
Mathlib.Tactic.Contrapose.contraposeβ
Preorder.toLT
Nontrivial
not_subsingleton_iff_nontrivial
eccent.eq_1
eq_or_ne
edist_self
edist_top_of_ne
iSupβ_mono
edist_anti
iSup_prod
Preconnected
IsEmpty.forall_iff
ENat.iSup_eq_zero
iSupβ_le_iff
iSupβ_le
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
le_top
le_trans
edist_triangle
two_mul
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
edist_comm
ciSup_const
le_iSupβ
ext
Adj.ne
Iff.ne
edist_eq_zero_iff
dist.eq_1
exists_eq_ciSup_of_finite
ENat.exists_eq_iSup_of_lt_top
Ne.lt_top
ENat.exists_eq_iInf
Prod.exists'
Finite.instProd
ENat.exists_eq_iSupβ_of_lt_top
Set
Set.instMembership
Mathlib.Tactic.Contrapose.contraposeβ
Not.imp_symm
iSup_le
Eq.le
iInf
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
iInf_of_empty
iInf_top
radius.eq_1
ENat.iInf_eq_zero
iInf_le
iInf_le_iSup
ciInf_const
---
β Back to Index