Documentation Verification Report

Turan

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Extremal/Turan.lean

Statistics

MetricCount
DefinitionsIsTuranMaximal, finpartition, instDecidableRelR, setoid, instDecidableRelFinAdjTuranGraph, turanGraph
6
Theoremscard_edgeFinset_le, card_parts, card_parts_le, degree_eq_card_sub_part_card, degree_eq_of_not_adj, equivalence_not_adj, isEquipartition, iso, nonempty_iso_turanGraph, not_adj_iff_part_eq, not_adj_trans, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, card_edgeFinset_turanGraph, card_edgeFinset_turanGraph_add, exists_isTuranMaximal, extremalNumber_top, isExtremal_top_free_iff_isTuranMaximal, isExtremal_top_free_turanGraph, isTuranMaximal_iff_nonempty_iso_turanGraph, isTuranMaximal_of_iso, isTuranMaximal_turanGraph, mul_card_edgeFinset_turanGraph_le, not_cliqueFree_of_isTuranMaximal, turanGraph_adj, turanGraph_cliqueFree, turanGraph_eq_top, turanGraph_zero
27
Total33

SimpleGraph

Definitions

NameCategoryTheorems
IsTuranMaximal πŸ“–MathDef
5 mathmath: isExtremal_top_free_iff_isTuranMaximal, isTuranMaximal_turanGraph, exists_isTuranMaximal, isTuranMaximal_iff_nonempty_iso_turanGraph, isTuranMaximal_of_iso
instDecidableRelFinAdjTuranGraph πŸ“–CompOp
6 mathmath: isTuranMaximal_turanGraph, card_edgeFinset_turanGraph_add, extremalNumber_top, isExtremal_top_free_turanGraph, card_edgeFinset_turanGraph, mul_card_edgeFinset_turanGraph_le
turanGraph πŸ“–CompOp
13 mathmath: turanGraph_eq_top, isTuranMaximal_turanGraph, turanGraph_cliqueFree, IsTuranMaximal.nonempty_iso_turanGraph, card_edgeFinset_turanGraph_add, extremalNumber_top, isExtremal_top_free_turanGraph, turanGraph_zero, turanGraph_adj, isTuranMaximal_iff_nonempty_iso_turanGraph, card_edgeFinset_turanGraph, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, mul_card_edgeFinset_turanGraph_le

Theorems

NameKindAssumesProvesValidatesDepends On
card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph πŸ“–mathematicalβ€”Free
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Finset.card
Sym2
edgeFinset
fintypeEdgeSet
Sym2.instFintype
extremalNumber
Fintype.card
Iso
turanGraph
β€”isTuranMaximal_iff_nonempty_iso_turanGraph
Fintype.one_lt_card
isExtremal_top_free_iff_isTuranMaximal
isExtremal_free_iff
card_edgeFinset_turanGraph πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
turanGraph
fintypeEdgeSet
Sym2.instFintype
Fin.fintype
instDecidableRelFinAdjTuranGraph
Monoid.toNatPow
Nat.instMonoid
Nat.choose
β€”β€”
card_edgeFinset_turanGraph_add πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
turanGraph
fintypeEdgeSet
Sym2.instFintype
Fin.fintype
instDecidableRelFinAdjTuranGraph
Nat.choose
β€”mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
Nat.instIsCancelMulZero
two_ne_zero
mul_add
Distrib.leftDistribClass
Finset.sum_congr
neighborFinset_eq_filter
Finset.card_filter
Fin.sum_univ_eq_sum_range
Finset.sum_range_add
Finset.sum_add_distrib
add_assoc
Finset.sum_comm
Nat.instAtLeastTwoHAddOfNat
Finset.card_range
smul_eq_mul
Finset.sum_const
mul_comm
Nat.choose_two_right
Nat.div_two_mul_two_of_even
Nat.even_mul_pred_self
exists_isTuranMaximal πŸ“–mathematicalβ€”IsTuranMaximalβ€”cliqueFree_bot
extremalNumber_top πŸ“–mathematicalβ€”extremalNumber
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Finset.card
Sym2
edgeFinset
turanGraph
Fintype.card
fintypeEdgeSet
Sym2.instFintype
Fin.fintype
instDecidableRelFinAdjTuranGraph
β€”Fintype.card_fin
card_edgeFinset_of_isExtremal_free
isExtremal_top_free_turanGraph
isExtremal_top_free_iff_isTuranMaximal πŸ“–mathematicalβ€”IsExtremal
Free
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
IsTuranMaximal
Fintype.card
β€”Fintype.card_ne_zero
Nontrivial.to_nonempty
isExtremal_top_free_turanGraph πŸ“–mathematicalβ€”IsExtremal
Fin.fintype
turanGraph
Fintype.card
instDecidableRelFinAdjTuranGraph
Free
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”isExtremal_top_free_iff_isTuranMaximal
isTuranMaximal_turanGraph
Fintype.one_lt_card
isTuranMaximal_iff_nonempty_iso_turanGraph πŸ“–mathematicalβ€”IsTuranMaximal
Iso
Fintype.card
turanGraph
β€”IsTuranMaximal.nonempty_iso_turanGraph
isTuranMaximal_of_iso
isTuranMaximal_of_iso πŸ“–mathematicalβ€”IsTuranMaximalβ€”exists_isTuranMaximal
IsTuranMaximal.nonempty_iso_turanGraph
CliqueFree.comap
turanGraph_cliqueFree
Iso.card_edgeFinset_eq
Fintype.card_fin
Iso.card_eq
isTuranMaximal_turanGraph πŸ“–mathematicalβ€”IsTuranMaximal
Fin.fintype
turanGraph
instDecidableRelFinAdjTuranGraph
β€”isTuranMaximal_of_iso
mul_card_edgeFinset_turanGraph_le πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
turanGraph
fintypeEdgeSet
Sym2.instFintype
Fin.fintype
instDecidableRelFinAdjTuranGraph
Monoid.toNatPow
Nat.instMonoid
β€”card_edgeFinset_turanGraph
mul_add
Distrib.leftDistribClass
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
le_refl
tsub_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
mul_le_mul_left
pow_le_pow_leftβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
mul_comm
Nat.choose_two_right
Nat.instAtLeastTwoHAddOfNat
Even.two_dvd
Nat.even_mul_pred_self
mul_assoc
mul_div_cancel_leftβ‚€
Nat.instMulDivCancelClass
two_ne_zero
mul_rotate
sq
LT.lt.le
not_cliqueFree_of_isTuranMaximal πŸ“–mathematicalFintype.card
IsTuranMaximal
CliqueFreeβ€”Finset.exists_subset_card_eq
LE.le.trans_eq
le_sup_right
IsExtremal.le_iff_eq
CliqueFree.sup_edge
le_sup_left
edge_adj
turanGraph_adj πŸ“–mathematicalβ€”Adj
turanGraph
β€”β€”
turanGraph_cliqueFree πŸ“–mathematicalβ€”CliqueFree
turanGraph
β€”cliqueFree_iff
Fintype.exists_ne_map_eq_of_card_lt
Fintype.card_fin
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
turanGraph_eq_top πŸ“–mathematicalβ€”turanGraph
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
LT.lt.trans
LT.lt.trans_le
turanGraph_zero πŸ“–mathematicalβ€”turanGraph
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”β€”

SimpleGraph.CliqueFree

Theorems

NameKindAssumesProvesValidatesDepends On
card_edgeFinset_le πŸ“–mathematicalSimpleGraph.CliqueFreeFinset.card
Sym2
SimpleGraph.edgeFinset
SimpleGraph.fintypeEdgeSet
Sym2.instFintype
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Nat.choose
β€”zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
MulZeroClass.mul_zero
zero_add
SimpleGraph.card_edgeFinset_le_card_choose_two
SimpleGraph.exists_isTuranMaximal
SimpleGraph.Iso.card_edgeFinset_eq
SimpleGraph.isTuranMaximal_iff_nonempty_iso_turanGraph
SimpleGraph.card_edgeFinset_turanGraph

SimpleGraph.IsTuranMaximal

Definitions

NameCategoryTheorems
finpartition πŸ“–CompOp
5 mathmath: not_adj_iff_part_eq, card_parts_le, isEquipartition, card_parts, degree_eq_card_sub_part_card
instDecidableRelR πŸ“–CompOpβ€”
setoid πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
card_parts πŸ“–mathematicalSimpleGraph.IsTuranMaximalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
finpartition
Fintype.card
β€”le_antisymm
le_min
Finpartition.card_parts_le_card
card_parts_le
Finset.exists_ne_map_eq_of_card_lt_of_maps_to
lt_min_iff
Finpartition.part_mem
Finset.mem_univ
eq_1
SimpleGraph.IsExtremal.eq_1
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
not_adj_iff_part_eq
SimpleGraph.CliqueFree.sup_edge
Lean.Meta.FastSubsingleton.elim
Fintype.instFastSubsingleton
SimpleGraph.card_edgeFinset_sup_edge
card_parts_le πŸ“–mathematicalSimpleGraph.IsTuranMaximalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
finpartition
β€”Finpartition.exists_subset_part_bijOn
SimpleGraph.IsNClique.not_cliqueFree
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Set.BijOn.injOn
not_adj_iff_part_eq
SimpleGraph.CliqueFree.mono
Finset.card_eq_of_equiv
degree_eq_card_sub_part_card πŸ“–mathematicalSimpleGraph.IsTuranMaximalSimpleGraph.degree
SimpleGraph.neighborSetFintype
Fintype.card
Finset.card
Finpartition.part
Finset.univ
finpartition
β€”Set.toFinset_card
Fintype.card_ofFinset
Finset.filter.congr_simp
eq_tsub_of_add_eq
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Finset.card_filter_add_card_filter_not
Finset.ext
Finset.mem_filter
Lean.Meta.FastSubsingleton.elim
Lean.Meta.instFastSubsingletonForall
Lean.Meta.instFastSubsingletonDecidable
Finpartition.mem_part_ofSetoid_iff_rel
degree_eq_of_not_adj πŸ“–mathematicalSimpleGraph.IsTuranMaximal
SimpleGraph.Adj
SimpleGraph.degree
SimpleGraph.neighborSetFintype
β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
SimpleGraph.CliqueFree.replaceVertex
SimpleGraph.card_edgeFinset_replaceVertex_of_not_adj
lt_of_le_of_ne
le_of_not_gt
SimpleGraph.adj_comm
LT.lt.ne'
SimpleGraph.IsExtremal.eq_1
eq_1
equivalence_not_adj πŸ“–mathematicalSimpleGraph.IsTuranMaximalSimpleGraph.Adjβ€”not_adj_trans
isEquipartition πŸ“–mathematicalSimpleGraph.IsTuranMaximalFinpartition.IsEquipartition
Finset.univ
finpartition
β€”Finpartition.not_isEquipartition
Finpartition.nonempty_of_mem_parts
eq_1
SimpleGraph.IsExtremal.eq_1
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
SimpleGraph.CliqueFree.replaceVertex
Finpartition.part_eq_of_mem
not_adj_iff_part_eq
SimpleGraph.card_edgeFinset_replaceVertex_of_adj
degree_eq_card_sub_part_card
Finset.card_le_card
Finset.subset_univ
iso πŸ“–β€”SimpleGraph.IsTuranMaximalβ€”β€”SimpleGraph.isTuranMaximal_of_iso
nonempty_iso_turanGraph
nonempty_iso_turanGraph πŸ“–mathematicalSimpleGraph.IsTuranMaximalSimpleGraph.Iso
Fintype.card
SimpleGraph.turanGraph
β€”Finpartition.IsEquipartition.exists_partPreservingEquiv
isEquipartition
Finset.mem_univ
not_iff_not
not_ne_iff
not_adj_iff_part_eq
card_parts
le_or_gt
min_eq_right
min_eq_left
LT.lt.le
LT.lt.trans
not_adj_iff_part_eq πŸ“–mathematicalSimpleGraph.IsTuranMaximalSimpleGraph.Adj
Finpartition.part
Finset.univ
finpartition
β€”Finpartition.mem_part_ofSetoid_iff_rel
Finpartition.mem_part_iff_part_eq_part
Finset.mem_univ
not_adj_trans πŸ“–β€”SimpleGraph.IsTuranMaximal
SimpleGraph.Adj
β€”β€”SimpleGraph.Adj.symm
degree_eq_of_not_adj
Mathlib.Tactic.Contrapose.contrapose₃
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
SimpleGraph.CliqueFree.replaceVertex
SimpleGraph.ne_of_adj
Iff.not
SimpleGraph.adj_replaceVertex_iff_of_ne
SimpleGraph.card_edgeFinset_replaceVertex_of_not_adj
Finset.ext
SimpleGraph.degree.eq_1
Finset.card_singleton
Finset.card_sdiff_of_subset
SimpleGraph.degree_pos_iff_exists_adj
SimpleGraph.IsExtremal.eq_1
eq_1

---

← Back to Index