Documentation Verification Report

TuranDensity

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Extremal/TuranDensity.lean

Statistics

MetricCount
DefinitionsturanDensity
1
TheoremsantitoneOn_extremalNumber_div_choose_two, isEquivalent_extremalNumber, tendsto_turanDensity
3
Total4

SimpleGraph

Definitions

NameCategoryTheorems
turanDensity πŸ“–CompOp
2 mathmath: tendsto_turanDensity, isEquivalent_extremalNumber

Theorems

NameKindAssumesProvesValidatesDepends On
antitoneOn_extremalNumber_div_choose_two πŸ“–mathematicalβ€”AntitoneOn
Real
Nat.instPreorder
Real.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
extremalNumber
Nat.choose
Set.Ici
β€”antitoneOn_nat_Ici_of_succ_le
Fintype.card_fin
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Nat.cast_zero
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Nat.choose_pos
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Int.instCharZero
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_add
Nat.cast_one
extremalNumber_le_iff_of_nonneg
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_nonneg'
mul_comm
mul_div_assoc
le_div_iffβ‚€'
Nat.cast_choose_two
CharZero.NeZero.two
Nat.cast_add_one
add_sub_cancel_right
mul_div
mul_assoc
mul_le_mul_iff_rightβ‚€
div_pos
Nat.cast_pos'
NeZero.charZero_one
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Real.instNontrivial
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_pred
Nat.cast_mul
Nat.cast_le
Finset.card_univ
Finset.card_nsmul_le_card_nsmul'
Finset.bipartiteBelow.congr_simp
Finset.filter_not
Finset.filter_mem_eq_inter
Finset.univ_inter
Finset.card_compl
card_toFinset_mem_edgeFinset
edgeFinset_deleteIncidenceSet_eq_filter
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
card_edgeFinset_deleteIncidenceSet_le_extremalNumber
isEquivalent_extremalNumber πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Nat.instPreorder
Real.instNatCast
extremalNumber
Real.instMul
turanDensity
Nat.choose
β€”tendsto_turanDensity
Filter.eventually_atTop
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Asymptotics.isEquivalent_iff_tendsto_one
one_mul
div_mul_div_comm
one_div_mul_cancel
Filter.Tendsto.const_mul
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
tendsto_turanDensity πŸ“–mathematicalβ€”Filter.Tendsto
Real
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
extremalNumber
Nat.choose
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
turanDensity
β€”tendsto_atTop_ciInf
LinearOrder.infConvergenceClass
instOrderTopologyReal
antitone_add_nat_iff_antitoneOn_nat_Ici
antitoneOn_extremalNumber_div_choose_two
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Filter.tendsto_add_atTop_iff_nat
Filter.Tendsto.limUnder_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat

---

← Back to Index