Documentation Verification Report

Finite

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Finite.lean

Statistics

MetricCount
DefinitionsIsRegularOfDegree, degree, edgeFinset, incidenceFinset, incidenceSetFintype, instDecidablePredMemSetSupport, maxDegree, minDegree, neighborFinset, neighborSetFintype
10
Theoremscard_commonNeighbors_lt_degree, degree_pos_left, degree_pos_right, compl, degree_eq, top, card_edgeFinset_eq, degree_eq, maxDegree_eq, minDegree_eq, bot_degree, card_commonNeighbors_le_degree_left, card_commonNeighbors_le_degree_right, card_commonNeighbors_lt_card_verts, card_commonNeighbors_top, card_edgeFinset_induce_of_support_subset, card_edgeFinset_induce_support, card_edgeFinset_le_card_choose_two, card_edgeFinset_map, card_edgeFinset_top_eq_card_choose_two, card_edgeSet, card_incidenceFinset_eq_degree, card_incidenceSet_eq_degree, card_neighborFinset_eq_degree, card_neighborSet_eq_degree, card_toFinset_mem_edgeFinset, coe_edgeFinset, coe_incidenceFinset, coe_neighborFinset, complete_graph_degree, degree_compl, degree_eq_one_iff_existsUnique_adj, degree_eq_zero_iff_notMem_support, degree_eq_zero_of_subsingleton, degree_induce_of_neighborSet_subset, degree_induce_of_support_subset, degree_induce_support, degree_le_card_edgeFinset, degree_le_maxDegree, degree_le_of_le, degree_lt_card_verts, degree_pos_iff_exists_adj, degree_pos_iff_mem_support, degree_pos_iff_nonempty, disjoint_edgeFinset, edgeFinset_bot, edgeFinset_card, edgeFinset_eq_empty, edgeFinset_inf, edgeFinset_inj, edgeFinset_map, edgeFinset_mono, edgeFinset_nonempty, edgeFinset_sdiff, edgeFinset_ssubset_edgeFinset, edgeFinset_strict_mono, edgeFinset_subset_edgeFinset, edgeFinset_subset_sym2_of_support_subset, edgeFinset_sup, edgeFinset_top, edgeSet_univ_card, exists_maximal_degree_vertex, exists_minimal_degree_vertex, incidenceFinset_eq_filter, incidenceFinset_subset, le_minDegree_of_forall_le_degree, map_edgeFinset_induce, map_edgeFinset_induce_of_support_subset, map_neighborFinset_induce, map_neighborFinset_induce_of_neighborSet_subset, maxDegree_bot_eq_zero, maxDegree_le_of_forall_degree_le, maxDegree_lt_card_verts, maxDegree_of_isEmpty, mem_edgeFinset, mem_incidenceFinset, mem_neighborFinset, minDegree_bot_eq_zero, minDegree_le_degree, minDegree_le_maxDegree, minDegree_le_minDegree, minDegree_lt_card, minDegree_of_isEmpty, neighborFinset_compl, neighborFinset_def, neighborFinset_disjoint_singleton, neighborFinset_eq_filter, nontrivial_of_degree_ne_zero, notMem_neighborFinset_self, not_isDiag_of_mem_edgeFinset, singleton_disjoint_neighborFinset
91
Total101

SimpleGraph

Definitions

NameCategoryTheorems
IsRegularOfDegree πŸ“–MathDef
3 mathmath: IsSRGWith.regular, IsSRGWith.compl_is_regular, IsRegularOfDegree.top
degree πŸ“–CompOp
70 mathmath: Preconnected.degree_pos_of_nontrivial, degree_le_maxDegree, isBipartiteWith_degree_le', sum_degrees_eq_twice_card_edges, sum_incMatrix_apply, degree_lt_card_verts, degree_eq_zero_iff_notMem_support, Adj.degree_pos_left, card_incidenceSet_eq_degree, card_commonNeighbors_le_degree_left, card_neighborSet_eq_degree, dotProduct_mulVec_degMatrix, isBipartiteWith_sum_degrees_eq_card_edges, Subgraph.coe_degree, Adj.card_commonNeighbors_lt_degree, degree_completeEquipartiteGraph, isBipartiteWith_sum_degrees_eq_card_edges', degree_pos_iff_exists_adj, exists_minimal_degree_vertex, even_card_odd_degree_vertices, cycleGraph_degree_three_le, Adj.degree_pos_right, degree_pos_iff_nonempty, Walk.IsEulerian.even_degree_iff, card_commonNeighbors_le_degree_right, degree_induce_support, card_neighborSet_toSubgraph, incMatrix_mul_transpose, adjMatrix_mulVec_const_apply, degree_le_between_add, card_edgeFinset_replaceVertex_of_not_adj, lapMatrix_mulVec_apply, card_edgeFinset_replaceVertex_of_adj, card_neighborFinset_eq_degree, Subgraph.degree_le, degree_toSubgraph, IsTuranMaximal.degree_eq_of_not_adj, sum_degrees_support_eq_twice_card_edges, complete_graph_degree, dart_card_eq_sum_degrees, isBipartiteWith_degree_le, exists_maximal_degree_vertex, degree_induce_of_neighborSet_subset, incMatrix_mul_transpose_diag, dart_fst_fiber_card_eq_degree, Iso.degree_eq, card_edgeFinset_deleteIncidenceSet, degree_compl, degree_eq_sum_if_adj, degree_pos_iff_mem_support, card_incidenceFinset_eq_degree, bot_degree, degree_le_of_le, degree_le_between_add_compl, degree_le_card_edgeFinset, adjMatrix_mul_self_apply_self, IsTree.exists_vert_degree_one_of_nontrivial, degMatrix_mulVec_apply, degree_induce_of_support_subset, IsRegularOfDegree.degree_eq, cycleGraph_degree_two_le, IsTuranMaximal.degree_eq_card_sub_part_card, Subgraph.degree_spanningCoe, Walk.IsEulerian.card_odd_degree, degree_eq_zero_of_subsingleton, minDegree_le_degree, degree_boxProd, degree_eq_one_iff_existsUnique_adj, isBipartiteWith_sum_degrees_eq, isBipartiteWith_sum_degrees_eq_twice_card_edges
edgeFinset πŸ“–CompOp
81 mathmath: edgeFinset_mono, deleteFar_iff, EdgeDisjointTriangles.card_edgeFinset_le, edgeFinset_subset_sym2_of_support_subset, DeleteFar.le_card_sub_card, two_mul_card_edgeFinset, sum_degrees_eq_twice_card_edges, edgeFinset_sdiff, card_edgeFinset_sup_edge, edgeFinset_inj, edgeFinset_top, map_edgeFinset_induce_of_support_subset, extremalNumber_le_iff_of_nonneg, card_edgeFinset_le_card_choose_two, incidenceFinset_eq_filter, card_edgeFinset_map, farFromTriangleFree_iff, coe_edgeFinset, edgeFinset_deleteIncidenceSet_eq_sdiff, isBipartiteWith_sum_degrees_eq_card_edges, edgeFinset_map, card_edgeFinset_of_isExtremal_free, isBipartiteWith_sum_degrees_eq_card_edges', edgeFinset_replaceVertex_of_adj, LocallyLinear.card_edgeFinset, edgeFinset_nonempty, card_edgeFinset_le_extremalNumber, farFromTriangleFree.le_card_sub_card, disjoint_edgeFinset, isExtremal_free_iff, card_edgeFinset_turanGraph_add, le_card_edgeFinset_killCopies_add_copyCount, edgeFinset_replaceVertex_of_not_adj, Iso.card_edgeFinset_eq, incidenceFinset_subset, extremalNumber_top, edgeFinset_sup, card_edgeFinset_deleteIncidenceSet_le_extremalNumber, card_edgeFinset_top_eq_card_choose_two, dart_card_eq_twice_card_edges, extremalNumber_of_fintypeCard_eq, DeleteFar.le_card_edgeFinset, edgeFinset_deleteIncidenceSet_eq_filter, edgeFinset_strict_mono, card_edgeFinset_replaceVertex_of_not_adj, le_card_edgeFinset_killCopies, card_edgeFinset_replaceVertex_of_adj, sum_degrees_support_eq_twice_card_edges, mem_edgeFinset, edgeFinset_bot, extremalNumber_le_iff, card_edgeFinset_deleteIncidenceSet, lt_extremalNumber_iff, edgeFinset_subset_edgeFinset, lt_extremalNumber_iff_of_nonneg, Walk.IsEulerian.edgesFinset_eq, edgeFinset_eq_empty, disjoint_sdiff_neighborFinset_image, regularityReduced_edges_card_aux, degree_le_card_edgeFinset, triangle_removal, card_edgeFinset_turanGraph, edgeSet_univ_card, card_edgeFinset_induce_support, card_edgeFinset_completeEquipartiteGraph, Walk.IsTrail.length_le_card_edgeFinset, edgeFinset_sup_edge, card_toFinset_mem_edgeFinset, CliqueFree.card_edgeFinset_le, card_edgeSet, card_edgeFinset_eq_extremalNumber_top_iff_nonempty_iso_turanGraph, card_edgeFinset_induce_of_support_subset, edgeFinset_deleteEdges, edgeFinset_inf, map_edgeFinset_induce, edgeFinset_card, mul_card_edgeFinset_turanGraph_le, IsTree.card_edgeFinset, isBipartiteWith_sum_degrees_eq_twice_card_edges, edgeFinset_ssubset_edgeFinset, card_edgeFinset_induce_compl_singleton
incidenceFinset πŸ“–CompOp
9 mathmath: incidenceFinset_eq_filter, edgeFinset_deleteIncidenceSet_eq_sdiff, mem_incidenceFinset, edgeFinset_replaceVertex_of_adj, edgeFinset_replaceVertex_of_not_adj, incidenceFinset_subset, coe_incidenceFinset, card_incidenceFinset_eq_degree, disjoint_sdiff_neighborFinset_image
incidenceSetFintype πŸ“–CompOp
1 mathmath: card_incidenceSet_eq_degree
instDecidablePredMemSetSupport πŸ“–CompOp
4 mathmath: degree_induce_support, card_support_deleteIncidenceSet, sum_degrees_support_eq_twice_card_edges, card_edgeFinset_induce_support
maxDegree πŸ“–CompOp
8 mathmath: degree_le_maxDegree, Iso.maxDegree_eq, maxDegree_bot_eq_zero, exists_maximal_degree_vertex, maxDegree_le_of_forall_degree_le, minDegree_le_maxDegree, maxDegree_of_isEmpty, maxDegree_lt_card_verts
minDegree πŸ“–CompOp
12 mathmath: minDegree_lt_card, minDegree_of_isEmpty, exists_minimal_degree_vertex, le_minDegree_of_forall_le_degree, IsTree.minDegree_eq_one_of_nontrivial, Iso.minDegree_eq, Preconnected.minDegree_pos_of_nontrivial, minDegree_bot_eq_zero, minDegree_le_maxDegree, IsFiveWheelLike.minDegree_le_of_cliqueFree_fiveWheelLikeFree_succ, minDegree_le_minDegree, minDegree_le_degree
neighborFinset πŸ“–CompOp
39 mathmath: adjMatrix_mulVec_apply, isBipartiteWith_neighborFinset_disjoint, IsSRGWith.card_neighborFinset_union_eq, mul_adjMatrix_apply, notMem_neighborFinset_self, neighborFinset_completeEquipartiteGraph, neighborFinset_compl, neighborFinset_disjoint_singleton, edgeFinset_replaceVertex_of_adj, neighborFinset_subset_between_union, isBipartiteWith_neighborFinset, edgeFinset_replaceVertex_of_not_adj, neighborFinset_subset_between_union_compl, neighborFinset_boxProd, isBipartiteWith_neighborFinset_subset, isBipartiteWith_neighborFinset_disjoint', dotProduct_adjMatrix, map_neighborFinset_induce_of_neighborSet_subset, lapMatrix_mulVec_apply, cycleGraph_neighborFinset, card_neighborFinset_eq_degree, isBipartiteWith_bipartiteBelow, map_neighborFinset_induce, mem_neighborFinset, sdiff_compl_neighborFinset_inter_eq, IsSRGWith.card_neighborFinset_union_of_not_adj, adjMatrix_mul_apply, IsSRGWith.card_neighborFinset_union_of_adj, adjMatrix_vecMul_apply, disjoint_sdiff_neighborFinset_image, compl_neighborFinset_sdiff_inter_eq, adjMatrix_dotProduct, neighborFinset_eq_filter, coe_neighborFinset, isBipartiteWith_bipartiteAbove, isBipartiteWith_neighborFinset_subset', singleton_disjoint_neighborFinset, neighborFinset_def, isBipartiteWith_neighborFinset'
neighborSetFintype πŸ“–CompOp
69 mathmath: degree_le_maxDegree, adjMatrix_mulVec_apply, sum_degrees_eq_twice_card_edges, degree_lt_card_verts, card_commonNeighbors_le_degree_left, IsSRGWith.card_neighborFinset_union_eq, mul_adjMatrix_apply, edgeFinset_deleteIncidenceSet_eq_sdiff, neighborFinset_completeEquipartiteGraph, dotProduct_mulVec_degMatrix, isBipartiteWith_sum_degrees_eq_card_edges, neighborFinset_compl, Adj.card_commonNeighbors_lt_degree, degree_completeEquipartiteGraph, isBipartiteWith_sum_degrees_eq_card_edges', reachable_iff_exists_finsetWalkLength_nonempty, edgeFinset_replaceVertex_of_adj, neighborFinset_subset_between_union, exists_minimal_degree_vertex, edgeFinset_replaceVertex_of_not_adj, neighborFinset_subset_between_union_compl, even_card_odd_degree_vertices, cycleGraph_degree_three_le, Walk.IsEulerian.even_degree_iff, card_commonNeighbors_le_degree_right, adjMatrix_pow_apply_eq_card_walk, dotProduct_adjMatrix, IsSRGWith.regular, map_neighborFinset_induce_of_neighborSet_subset, degree_induce_support, adjMatrix_mulVec_const_apply, degree_le_between_add, card_edgeFinset_replaceVertex_of_not_adj, lapMatrix_mulVec_apply, dart_fst_fiber, IsSRGWith.compl_is_regular, cycleGraph_neighborFinset, card_edgeFinset_replaceVertex_of_adj, map_neighborFinset_induce, sdiff_compl_neighborFinset_inter_eq, IsSRGWith.card_neighborFinset_union_of_not_adj, IsTuranMaximal.degree_eq_of_not_adj, sum_degrees_support_eq_twice_card_edges, complete_graph_degree, dart_card_eq_sum_degrees, exists_maximal_degree_vertex, adjMatrix_mul_apply, degree_induce_of_neighborSet_subset, IsSRGWith.card_neighborFinset_union_of_adj, dart_fst_fiber_card_eq_degree, card_edgeFinset_deleteIncidenceSet, degree_eq_sum_if_adj, adjMatrix_vecMul_apply, disjoint_sdiff_neighborFinset_image, bot_degree, degree_le_between_add_compl, adjMatrix_mul_self_apply_self, IsTree.exists_vert_degree_one_of_nontrivial, compl_neighborFinset_sdiff_inter_eq, adjMatrix_dotProduct, neighborFinset_eq_filter, degMatrix_mulVec_apply, degree_induce_of_support_subset, cycleGraph_degree_two_le, IsTuranMaximal.degree_eq_card_sub_part_card, IsRegularOfDegree.top, Walk.IsEulerian.card_odd_degree, minDegree_le_degree, isBipartiteWith_sum_degrees_eq_twice_card_edges

Theorems

NameKindAssumesProvesValidatesDepends On
bot_degree πŸ“–mathematicalβ€”degree
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
neighborSetFintype
Bot.adjDecidable
β€”neighborFinset_eq_filter
Finset.filter.congr_simp
Finset.filter_false
Finset.card_empty
card_commonNeighbors_le_degree_left πŸ“–mathematicalβ€”Fintype.card
Set.Elem
commonNeighbors
Subtype.fintype
Set
Set.instMembership
decidableMemCommonNeighbors
degree
neighborSetFintype
β€”card_neighborSet_eq_degree
Set.card_le_card
Set.inter_subset_left
card_commonNeighbors_le_degree_right πŸ“–mathematicalβ€”Fintype.card
Set.Elem
commonNeighbors
Subtype.fintype
Set
Set.instMembership
decidableMemCommonNeighbors
degree
neighborSetFintype
β€”Fintype.card_congr'
commonNeighbors_symm
card_commonNeighbors_lt_card_verts πŸ“–mathematicalβ€”Fintype.card
Set.Elem
commonNeighbors
Subtype.fintype
Set
Set.instMembership
decidableMemCommonNeighbors
β€”card_commonNeighbors_le_degree_left
degree_lt_card_verts
card_commonNeighbors_top πŸ“–mathematicalβ€”Fintype.card
Set.Elem
commonNeighbors
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Subtype.fintype
Set
Set.instMembership
decidableMemCommonNeighbors
Top.adjDecidable
β€”Fintype.card_congr'
commonNeighbors_top_eq
Set.toFinset_diff
Set.toFinset_univ
Set.toFinset_insert
Set.toFinset_singleton
Finset.card_sdiff
Finset.inter_univ
Finset.card_insert_of_notMem
Finset.card_singleton
card_edgeFinset_induce_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
support
Finset.card
Sym2
Set.Elem
edgeFinset
induce
fintypeEdgeSet
Sym2.instFintype
Subtype.fintype
Set.instMembership
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.subtype
β€”map_edgeFinset_induce_of_support_subset
Finset.card_map
card_edgeFinset_induce_support πŸ“–mathematicalβ€”Finset.card
Sym2
Set.Elem
support
edgeFinset
induce
fintypeEdgeSet
Sym2.instFintype
Subtype.fintype
Set
Set.instMembership
instDecidablePredMemSetSupport
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.subtype
β€”card_edgeFinset_induce_of_support_subset
subset_rfl
Set.instReflSubset
card_edgeFinset_le_card_choose_two πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
Nat.choose
Fintype.card
β€”card_edgeFinset_top_eq_card_choose_two
Finset.card_le_card
edgeFinset_mono
le_top
card_edgeFinset_map πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
map
fintypeEdgeSet
Sym2.instFintype
instDecidableMapAdj
Relation.instDecidableMapOfExistsAndEq
Adj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Fintype.decidableExistsFintype
β€”edgeFinset_map
Finset.card_map
card_edgeFinset_top_eq_card_choose_two πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
fintypeEdgeSet
Sym2.instFintype
Top.adjDecidable
Nat.choose
Fintype.card
β€”Set.toFinset_card
Fintype.card_congr'
edgeSet_top
card_edgeSet πŸ“–mathematicalβ€”Fintype.card
Set.Elem
Sym2
edgeSet
Finset.card
edgeFinset
β€”Set.toFinset_card
card_incidenceFinset_eq_degree πŸ“–mathematicalβ€”Finset.card
Sym2
incidenceFinset
degree
β€”card_incidenceSet_eq_degree
Set.toFinset_card
card_incidenceSet_eq_degree πŸ“–mathematicalβ€”Fintype.card
Set.Elem
Sym2
incidenceSet
incidenceSetFintype
degree
β€”Fintype.card_congr
card_neighborSet_eq_degree
card_neighborFinset_eq_degree πŸ“–mathematicalβ€”Finset.card
neighborFinset
degree
β€”β€”
card_neighborSet_eq_degree πŸ“–mathematicalβ€”Fintype.card
Set.Elem
neighborSet
degree
β€”Set.toFinset_card
card_toFinset_mem_edgeFinset πŸ“–mathematicalβ€”Finset.card
Sym2.toFinset
Sym2
Finset
SetLike.instMembership
Finset.instSetLike
edgeFinset
β€”Sym2.card_toFinset_of_not_isDiag
not_isDiag_of_mem_edgeFinset
Subtype.prop
coe_edgeFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Sym2
Finset.instSetLike
edgeFinset
edgeSet
β€”Set.coe_toFinset
coe_incidenceFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Sym2
Finset.instSetLike
incidenceFinset
incidenceSet
β€”Set.coe_toFinset
coe_neighborFinset πŸ“–mathematicalβ€”SetLike.coe
Finset
Finset.instSetLike
neighborFinset
neighborSet
β€”Set.coe_toFinset
complete_graph_degree πŸ“–mathematicalβ€”degree
completeGraph
neighborSetFintype
Top.adjDecidable
Fintype.card
β€”neighborFinset_eq_filter
Finset.filter.congr_simp
Finset.filter_ne
Finset.card_erase_of_mem
Finset.mem_univ
Finset.card_univ
degree_compl πŸ“–mathematicalβ€”degree
Compl.compl
SimpleGraph
instCompl
Fintype.card
β€”card_neighborSet_union_compl_neighborSet
Set.toFinset_union
Finset.card_union_of_disjoint
Set.disjoint_toFinset
compl_neighborSet_disjoint
Set.toFinset_card
card_neighborSet_eq_degree
degree_eq_one_iff_existsUnique_adj πŸ“–mathematicalβ€”degree
ExistsUnique
Adj
β€”degree.eq_1
Finset.card_eq_one
Finset.singleton_iff_unique_mem
degree_eq_zero_iff_notMem_support πŸ“–mathematicalβ€”degree
Set
Set.instMembership
support
β€”degree_pos_iff_mem_support
not_ne_iff
degree_eq_zero_of_subsingleton πŸ“–mathematicalβ€”degreeβ€”degree_pos_iff_exists_adj
degree_induce_of_neighborSet_subset πŸ“–mathematicalSet
Set.instHasSubset
neighborSet
Set.instMembership
degree
Set.Elem
induce
neighborSetFintype
Subtype.fintype
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.subtype
β€”map_neighborFinset_induce_of_neighborSet_subset
Finset.card_map
degree_induce_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
support
degree
Set.Elem
induce
neighborSetFintype
Subtype.fintype
Set.instMembership
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.subtype
β€”degree_induce_of_neighborSet_subset
HasSubset.Subset.trans
Set.instIsTransSubset
neighborSet_subset_support
degree_induce_support πŸ“–mathematicalβ€”degree
Set.Elem
support
induce
neighborSetFintype
Subtype.fintype
Set
Set.instMembership
instDecidablePredMemSetSupport
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.subtype
β€”degree_induce_of_support_subset
subset_rfl
Set.instReflSubset
degree_le_card_edgeFinset πŸ“–mathematicalβ€”degree
Finset.card
Sym2
edgeFinset
β€”card_incidenceFinset_eq_degree
Finset.card_le_card
incidenceFinset_subset
degree_le_maxDegree πŸ“–mathematicalβ€”degree
neighborSetFintype
maxDegree
β€”Finset.max_of_mem
Finset.mem_image_of_mem
Finset.mem_univ
Finset.le_max_of_eq
maxDegree.eq_1
WithBot.unbotD_coe
degree_le_of_le πŸ“–mathematicalSimpleGraph
instLE
degreeβ€”Set.card_le_card
degree_lt_card_verts πŸ“–mathematicalβ€”degree
neighborSetFintype
Fintype.card
β€”Finset.card_lt_card
Finset.ssubset_iff
Finset.subset_univ
degree_pos_iff_exists_adj πŸ“–mathematicalβ€”degree
Adj
β€”β€”
degree_pos_iff_mem_support πŸ“–mathematicalβ€”degree
Set
Set.instMembership
support
β€”degree_pos_iff_exists_adj
mem_support
degree_pos_iff_nonempty πŸ“–mathematicalβ€”degree
Set.Nonempty
neighborSet
β€”degree_pos_iff_exists_adj
disjoint_edgeFinset πŸ“–mathematicalβ€”Disjoint
Finset
Sym2
Finset.partialOrder
Finset.instOrderBot
edgeFinset
SimpleGraph
instPartialOrder
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”coe_edgeFinset
edgeFinset_bot πŸ“–mathematicalβ€”edgeFinset
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
fintypeEdgeSetBot
Finset
Sym2
Finset.instEmptyCollection
β€”Set.toFinset_congr
edgeSet_bot
Set.toFinset_empty
edgeFinset_card πŸ“–mathematicalβ€”Finset.card
Sym2
edgeFinset
Fintype.card
Set.Elem
edgeSet
β€”Set.toFinset_card
edgeFinset_eq_empty πŸ“–mathematicalβ€”edgeFinset
Finset
Sym2
Finset.instEmptyCollection
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”edgeFinset_bot
edgeFinset_inf πŸ“–mathematicalβ€”edgeFinset
SimpleGraph
instMin
fintypeEdgeSetInf
Finset
Sym2
Finset.instInter
Sym2.instDecidableEq
β€”Set.toFinset_congr
edgeSet_inf
Set.toFinset_inter
edgeFinset_inj πŸ“–mathematicalβ€”edgeFinsetβ€”RelEmbedding.instEmbeddingLike
edgeFinset_map πŸ“–mathematicalβ€”edgeFinset
map
fintypeEdgeSet
Sym2.instFintype
instDecidableMapAdj
Relation.instDecidableMapOfExistsAndEq
Adj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Fintype.decidableExistsFintype
Finset.map
Sym2
Function.Embedding.sym2Map
β€”coe_edgeFinset
Finset.coe_map
edgeSet_map
edgeFinset_mono πŸ“–mathematicalSimpleGraph
instLE
Finset
Sym2
Finset.instHasSubset
edgeFinset
β€”edgeFinset_subset_edgeFinset
edgeFinset_nonempty πŸ“–mathematicalβ€”Finset.Nonempty
Sym2
edgeFinset
β€”Finset.nonempty_iff_ne_empty
Iff.ne
edgeFinset_eq_empty
edgeFinset_sdiff πŸ“–mathematicalβ€”edgeFinset
SimpleGraph
sdiff
fintypeEdgeSetSdiff
Finset
Sym2
Finset.instSDiff
Sym2.instDecidableEq
β€”Set.toFinset_congr
edgeSet_sdiff
Set.toFinset_diff
edgeFinset_ssubset_edgeFinset πŸ“–mathematicalβ€”Finset
Sym2
Finset.instHasSSubset
edgeFinset
SimpleGraph
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
β€”Set.coe_toFinset
edgeFinset_strict_mono πŸ“–mathematicalSimpleGraph
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Finset
Sym2
Finset.instHasSSubset
edgeFinset
β€”edgeFinset_ssubset_edgeFinset
edgeFinset_subset_edgeFinset πŸ“–mathematicalβ€”Finset
Sym2
Finset.instHasSubset
edgeFinset
SimpleGraph
instLE
β€”Set.coe_toFinset
edgeFinset_subset_sym2_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
support
Finset
Sym2
Finset.instHasSubset
edgeFinset
fintypeEdgeSet
Sym2.instFintype
Finset.sym2
Set.toFinset
Subtype.fintype
Set.instMembership
β€”Adj.symm
edgeFinset_sup πŸ“–mathematicalβ€”edgeFinset
SimpleGraph
instMax
Finset
Sym2
Finset.instUnion
Sym2.instDecidableEq
β€”Set.toFinset_congr
edgeSet_sup
Set.toFinset_union
edgeFinset_top πŸ“–mathematicalβ€”edgeFinset
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
fintypeEdgeSet
Sym2.instFintype
Top.adjDecidable
Set.toFinset
Sym2
Compl.compl
Set
Set.instCompl
Sym2.diagSet
Subtype.fintype
Set.instMembership
Set.decidableCompl
Sym2.decidablePred_mem_diagSet
β€”Set.toFinset_compl
coe_edgeFinset
edgeSet_top
Finset.coe_compl
Set.coe_toFinset
edgeSet_univ_card πŸ“–mathematicalβ€”Finset.card
Set.Elem
Sym2
edgeSet
Finset.univ
edgeFinset
β€”card_edgeSet
exists_maximal_degree_vertex πŸ“–mathematicalβ€”maxDegree
degree
neighborSetFintype
β€”Finset.max_of_nonempty
Finset.Nonempty.image
Finset.univ_nonempty
Finset.mem_of_max
maxDegree.eq_1
WithBot.unbotD_coe
exists_minimal_degree_vertex πŸ“–mathematicalβ€”minDegree
degree
neighborSetFintype
β€”Finset.min_of_nonempty
Finset.Nonempty.image
Finset.univ_nonempty
Finset.mem_image
Finset.mem_of_min
incidenceFinset_eq_filter πŸ“–mathematicalβ€”incidenceFinset
Finset.filter
Sym2
SetLike.instMembership
Sym2.instSetLike
Sym2.Mem.decidable
edgeFinset
β€”Finset.ext
Sym2.ind
incidenceFinset_subset πŸ“–mathematicalβ€”Finset
Sym2
Finset.instHasSubset
incidenceFinset
edgeFinset
β€”Set.toFinset_subset_toFinset
incidenceSet_subset
le_minDegree_of_forall_le_degree πŸ“–mathematicaldegree
neighborSetFintype
minDegreeβ€”exists_minimal_degree_vertex
map_edgeFinset_induce πŸ“–mathematicalβ€”Finset.map
Sym2
Set
Set.instMembership
Function.Embedding.sym2Map
Function.Embedding.subtype
edgeFinset
Set.Elem
induce
fintypeEdgeSet
Sym2.instFintype
Subtype.fintype
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Finset
Finset.instInter
Sym2.instDecidableEq
Finset.sym2
Set.toFinset
β€”Sym2.map_congr
map_edgeFinset_induce_of_support_subset πŸ“–mathematicalSet
Set.instHasSubset
support
Finset.map
Sym2
Set.instMembership
Function.Embedding.sym2Map
Function.Embedding.subtype
edgeFinset
Set.Elem
induce
fintypeEdgeSet
Sym2.instFintype
Subtype.fintype
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”map_edgeFinset_induce
edgeFinset_subset_sym2_of_support_subset
map_neighborFinset_induce πŸ“–mathematicalβ€”Finset.map
Set
Set.instMembership
Function.Embedding.subtype
neighborFinset
Set.Elem
induce
neighborSetFintype
Subtype.fintype
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Finset
Finset.instInter
Set.toFinset
β€”Finset.ext
map_neighborFinset_induce_of_neighborSet_subset πŸ“–mathematicalSet
Set.instHasSubset
neighborSet
Set.instMembership
Finset.map
Function.Embedding.subtype
neighborFinset
Set.Elem
induce
neighborSetFintype
Subtype.fintype
instDecidableComapAdj
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”map_neighborFinset_induce
Finset.inter_eq_left
neighborFinset_def
Set.toFinset_subset_toFinset
maxDegree_bot_eq_zero πŸ“–mathematicalβ€”maxDegree
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Bot.adjDecidable
β€”maxDegree_le_of_forall_degree_le
bot_degree
maxDegree_le_of_forall_degree_le πŸ“–mathematicaldegree
neighborSetFintype
maxDegreeβ€”maxDegree_of_isEmpty
exists_maximal_degree_vertex
maxDegree_lt_card_verts πŸ“–mathematicalβ€”maxDegree
Fintype.card
β€”exists_maximal_degree_vertex
degree_lt_card_verts
maxDegree_of_isEmpty πŸ“–mathematicalβ€”maxDegreeβ€”maxDegree.eq_1
Finset.univ_eq_empty
Finset.image_empty
Finset.max_empty
WithBot.unbotD_bot
mem_edgeFinset πŸ“–mathematicalβ€”Sym2
Finset
Finset.instMembership
edgeFinset
Set
Set.instMembership
edgeSet
β€”Set.mem_toFinset
mem_incidenceFinset πŸ“–mathematicalβ€”Sym2
Finset
Finset.instMembership
incidenceFinset
Set
Set.instMembership
incidenceSet
β€”Set.mem_toFinset
mem_neighborFinset πŸ“–mathematicalβ€”Finset
Finset.instMembership
neighborFinset
Adj
β€”Set.mem_toFinset
minDegree_bot_eq_zero πŸ“–mathematicalβ€”minDegree
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Bot.adjDecidable
β€”LE.le.trans
minDegree_le_maxDegree
maxDegree_bot_eq_zero
minDegree_le_degree πŸ“–mathematicalβ€”minDegree
degree
neighborSetFintype
β€”Finset.min_of_mem
Finset.mem_image_of_mem
Finset.mem_univ
Finset.min_le_of_eq
minDegree.eq_1
minDegree_le_maxDegree πŸ“–mathematicalβ€”minDegree
maxDegree
β€”minDegree_of_isEmpty
maxDegree_of_isEmpty
LE.le.trans
minDegree_le_degree
degree_le_maxDegree
minDegree_le_minDegree πŸ“–mathematicalSimpleGraph
instLE
minDegreeβ€”le_minDegree_of_forall_le_degree
LE.le.trans
minDegree_le_degree
degree_le_of_le
minDegree_of_isEmpty
minDegree_lt_card πŸ“–mathematicalβ€”minDegree
Fintype.card
β€”exists_minimal_degree_vertex
card_neighborFinset_eq_degree
Finset.card_univ
Iff.not
mem_neighborFinset
loopless
Mathlib.Tactic.Contrapose.contraposeβ‚‚
Finset.eq_of_subset_of_card_le
Finset.subset_univ
Finset.mem_univ
minDegree_of_isEmpty πŸ“–mathematicalβ€”minDegreeβ€”minDegree.eq_1
WithTop.untopD_eq_self_iff
degree_eq_zero_of_subsingleton
IsEmpty.instSubsingleton
Finset.univ_eq_empty
neighborFinset_compl πŸ“–mathematicalβ€”neighborFinset
Compl.compl
SimpleGraph
instCompl
neighborSetFintype
Compl.adjDecidable
Finset
Finset.instSDiff
BooleanAlgebra.toCompl
Finset.booleanAlgebra
Finset.instSingleton
β€”Set.toFinset_congr
neighborSet_compl
Set.toFinset_diff
Set.toFinset_compl
Set.toFinset_singleton
neighborFinset_def πŸ“–mathematicalβ€”neighborFinset
Set.toFinset
neighborSet
β€”β€”
neighborFinset_disjoint_singleton πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
neighborFinset
Finset.instSingleton
β€”Finset.disjoint_singleton_right
notMem_neighborFinset_self
neighborFinset_eq_filter πŸ“–mathematicalβ€”neighborFinset
neighborSetFintype
Finset.filter
Adj
Finset.univ
β€”Finset.ext
nontrivial_of_degree_ne_zero πŸ“–mathematicalβ€”Nontrivialβ€”degree_eq_zero_of_subsingleton
notMem_neighborFinset_self πŸ“–mathematicalβ€”Finset
Finset.instMembership
neighborFinset
β€”β€”
not_isDiag_of_mem_edgeFinset πŸ“–mathematicalSym2
Finset
Finset.instMembership
edgeFinset
Sym2.IsDiagβ€”not_isDiag_of_mem_edgeSet
mem_edgeFinset
singleton_disjoint_neighborFinset πŸ“–mathematicalβ€”Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Finset.instSingleton
neighborFinset
β€”Finset.disjoint_singleton_left
notMem_neighborFinset_self

SimpleGraph.Adj

Theorems

NameKindAssumesProvesValidatesDepends On
card_commonNeighbors_lt_degree πŸ“–mathematicalSimpleGraph.AdjFintype.card
Set.Elem
SimpleGraph.commonNeighbors
Subtype.fintype
Set
Set.instMembership
SimpleGraph.decidableMemCommonNeighbors
SimpleGraph.degree
SimpleGraph.neighborSetFintype
β€”Set.toFinset_card
Finset.card_lt_card
Finset.ssubset_iff
Set.mem_toFinset
SimpleGraph.notMem_commonNeighbors_right
Finset.insert_subset_iff
SimpleGraph.neighborFinset.eq_1
Set.toFinset_subset_toFinset
SimpleGraph.commonNeighbors_subset_neighborSet_left
degree_pos_left πŸ“–mathematicalSimpleGraph.AdjSimpleGraph.degreeβ€”SimpleGraph.degree_pos_iff_nonempty
degree_pos_right πŸ“–mathematicalSimpleGraph.AdjSimpleGraph.degreeβ€”degree_pos_left
symm

SimpleGraph.IsRegularOfDegree

Theorems

NameKindAssumesProvesValidatesDepends On
compl πŸ“–mathematicalSimpleGraph.IsRegularOfDegree
Subtype.fintype
Set
Set.instMembership
SimpleGraph.neighborSet
SimpleGraph.neighborSet.memDecidable
Compl.compl
SimpleGraph
SimpleGraph.instCompl
SimpleGraph.Compl.adjDecidable
Fintype.card
β€”SimpleGraph.degree_compl
degree_eq πŸ“–mathematicalSimpleGraph.IsRegularOfDegreeSimpleGraph.degreeβ€”β€”
top πŸ“–mathematicalβ€”SimpleGraph.IsRegularOfDegree
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
SimpleGraph.neighborSetFintype
SimpleGraph.Top.adjDecidable
Fintype.card
β€”SimpleGraph.complete_graph_degree

SimpleGraph.Iso

Theorems

NameKindAssumesProvesValidatesDepends On
card_edgeFinset_eq πŸ“–mathematicalβ€”Finset.card
Sym2
SimpleGraph.edgeFinset
β€”Finset.card_eq_of_equiv
degree_eq πŸ“–mathematicalβ€”SimpleGraph.degree
DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
β€”SimpleGraph.card_neighborSet_eq_degree
Fintype.card_congr
maxDegree_eq πŸ“–mathematicalβ€”SimpleGraph.maxDegreeβ€”isEmpty_or_nonempty
SimpleGraph.maxDegree_of_isEmpty
Equiv.isEmpty
Equiv.nonempty
le_antisymm
SimpleGraph.exists_maximal_degree_vertex
degree_eq
SimpleGraph.degree_le_maxDegree
minDegree_eq πŸ“–mathematicalβ€”SimpleGraph.minDegreeβ€”isEmpty_or_nonempty
SimpleGraph.minDegree_of_isEmpty
Equiv.isEmpty
Equiv.nonempty
le_antisymm
SimpleGraph.exists_minimal_degree_vertex
degree_eq
SimpleGraph.minDegree_le_degree

---

← Back to Index