Documentation Verification Report

FiveWheelLike

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/FiveWheelLike.lean

Statistics

MetricCount
DefinitionsFiveWheelLikeFree, IsFiveWheelLike
2
TheoremsfiveWheelLikeFree_of_le, card_inter, card_inter_lt_of_cliqueFree, card_left, card_right, exists_isFiveWheelLike_succ_of_not_adj_le_two, fst_notMem, fst_notMem_right, isNClique_fst_left, isNClique_left, isNClique_right, isNClique_snd_right, isPathGraph3Compl, minDegree_le_of_cliqueFree_fiveWheelLikeFree_succ, notMem_left, notMem_right, not_colorable_succ, snd_notMem, snd_notMem_left, colorable_iff_isCompleteMultipartite_of_maximal_cliqueFree, colorable_of_cliqueFree_lt_minDegree, exists_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite, exists_max_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite
23
Total25

SimpleGraph

Definitions

NameCategoryTheorems
FiveWheelLikeFree πŸ“–MathDef
2 mathmath: CliqueFree.fiveWheelLikeFree_of_le, exists_max_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite
IsFiveWheelLike πŸ“–CompData
2 mathmath: exists_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite, exists_max_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite

Theorems

NameKindAssumesProvesValidatesDepends On
colorable_iff_isCompleteMultipartite_of_maximal_cliqueFree πŸ“–mathematicalMaximal
SimpleGraph
instLE
CliqueFree
Colorable
IsCompleteMultipartite
β€”cliqueFree_one
colorable_zero_iff
Mathlib.Tactic.Contrapose.contrapose₁
exists_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite
IsFiveWheelLike.not_colorable_succ
IsCompleteMultipartite.colorable_of_cliqueFree
colorable_of_cliqueFree_lt_minDegree πŸ“–mathematicalCliqueFree
Fintype.card
minDegree
Colorableβ€”MulZeroClass.mul_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
Fintype.card_eq_zero
zero_add
minDegree_of_isEmpty
mul_one
MulZeroClass.zero_mul
minDegree.congr_simp
minDegree_bot_eq_zero
Finite.exists_le_maximal
instFinite
Finite.of_fintype
Colorable.mono_left
IsCompleteMultipartite.colorable_of_cliqueFree
exists_max_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite
IsFiveWheelLike.minDegree_le_of_cliqueFree_fiveWheelLikeFree_succ
lt_add_one
Nat.instZeroLEOneClass
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
mul_le_mul_iff_rightβ‚€
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
mul_assoc
mul_comm
LE.le.trans
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_mul
Nat.cast_add
Nat.cast_one
Mathlib.Tactic.Linarith.mul_nonpos
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
IsOrderedRing.toMulPosMono
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Mathlib.Tactic.Linarith.natCast_nonneg
Mathlib.Meta.NormNum.isNat_lt_true
Int.instCharZero
LT.lt.not_ge
LT.lt.trans_le
minDegree_le_minDegree
exists_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite πŸ“–mathematicalMaximal
SimpleGraph
instLE
CliqueFree
IsCompleteMultipartite
IsFiveWheelLike
Finset.card
Finset
Finset.instInter
β€”exists_isPathGraph3Compl_of_not_isCompleteMultipartite
exists_of_maximal_cliqueFree_not_adj
IsPathGraph3Compl.ne_fst
IsPathGraph3Compl.not_adj_fst
IsPathGraph3Compl.ne_snd
IsPathGraph3Compl.not_adj_snd
exists_max_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite πŸ“–mathematicalMaximal
SimpleGraph
instLE
CliqueFree
IsCompleteMultipartite
IsFiveWheelLike
FiveWheelLikeFree
β€”exists_isFiveWheelLike_of_maximal_cliqueFree_not_isCompleteMultipartite
Nat.findGreatest_spec
LT.lt.le
IsFiveWheelLike.card_inter_lt_of_cliqueFree
LT.lt.not_ge
Nat.le_findGreatest

SimpleGraph.CliqueFree

Theorems

NameKindAssumesProvesValidatesDepends On
fiveWheelLikeFree_of_le πŸ“–mathematicalSimpleGraph.CliqueFreeSimpleGraph.FiveWheelLikeFreeβ€”LT.lt.not_ge
SimpleGraph.IsFiveWheelLike.card_inter_lt_of_cliqueFree

SimpleGraph.IsFiveWheelLike

Theorems

NameKindAssumesProvesValidatesDepends On
card_inter πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset.card
Finset
Finset.instInter
β€”β€”
card_inter_lt_of_cliqueFree πŸ“–β€”SimpleGraph.IsFiveWheelLike
SimpleGraph.CliqueFree
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Finset.eq_of_subset_of_card_le
Finset.inter_subset_left
card_left
card_inter
Finset.inter_subset_right
card_right
SimpleGraph.IsNClique.not_cliqueFree
isNClique_fst_left
isNClique_snd_right
snd_notMem_left
SimpleGraph.IsPathGraph3Compl.adj
isPathGraph3Compl
card_left πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset.cardβ€”SimpleGraph.IsNClique.card_eq
isNClique_left
Finset.card_insert_of_notMem
notMem_left
card_right πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset.cardβ€”card_left
symm
exists_isFiveWheelLike_succ_of_not_adj_le_two πŸ“–mathematicalSimpleGraph.IsFiveWheelLike
SimpleGraph.CliqueFree
SimpleGraph.Adj
Finset.card
Finset.filter
Finset
Finset.instUnion
Finset.instSingleton
Finset.instInsert
Finset.erase
β€”LE.le.not_gt
Finset.two_lt_card_iff
Mathlib.Tactic.Push.not_and_eq
SimpleGraph.IsNClique.isClique
isNClique_left
Finset.mem_insert_self
Finset.mem_insert_of_mem
isNClique_fst_left
isNClique_snd_right
Finset.two_lt_card
Finset.filter.congr_simp
Finset.union_insert
Finset.mem_filter
SimpleGraph.adj_comm
notMem_left
Finset.insert_subset_insert
Finset.mem_insert
fst_notMem
isNClique_right
notMem_right
snd_notMem
Finset.insert_inter_distrib
Finset.erase_inter
Finset.inter_erase
Finset.erase_eq_of_notMem
Finset.notMem_mono
Finset.inter_subset_left
Finset.inter_subset_right
Finset.card_insert_of_notMem
SimpleGraph.irrefl
card_inter
fst_notMem πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”β€”
fst_notMem_right πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”SimpleGraph.IsPathGraph3Compl.not_adj_fst
isPathGraph3Compl
SimpleGraph.IsNClique.isClique
isNClique_right
Finset.mem_insert_self
Finset.mem_insert_of_mem
SimpleGraph.IsPathGraph3Compl.ne_fst
isNClique_fst_left πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.IsNClique
Finset
Finset.instInsert
β€”β€”
isNClique_left πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.IsNClique
Finset
Finset.instInsert
β€”β€”
isNClique_right πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.IsNClique
Finset
Finset.instInsert
β€”β€”
isNClique_snd_right πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.IsNClique
Finset
Finset.instInsert
β€”β€”
isPathGraph3Compl πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.IsPathGraph3Complβ€”β€”
minDegree_le_of_cliqueFree_fiveWheelLikeFree_succ πŸ“–mathematicalSimpleGraph.IsFiveWheelLike
SimpleGraph.CliqueFree
SimpleGraph.FiveWheelLikeFree
SimpleGraph.minDegree
Fintype.card
β€”exists_isFiveWheelLike_succ_of_not_adj_le_two
Finset.filter.congr_simp
SimpleGraph.IsNClique.exists_not_adj_of_cliqueFree_succ
isNClique_fst_left
Finset.card_pos
Finset.mem_filter
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Finset.compl_filter
Nat.instAtLeastTwoHAddOfNat
zero_lt_three
Nat.instZeroLEOneClass
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
add_assoc
add_comm
mul_add
Distrib.leftDistribClass
card_inter
Finset.card_eq_sum_ones
Finset.mul_sum
Finset.sum_congr
mul_one
mul_comm
add_le_add
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
SimpleGraph.minDegree_le_degree
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
mul_le_mul_right
tsub_zero
Nat.instOrderedSub
compl_compl
Finset.eq_univ_of_forall
Finset.card_eq_zero
instIsEmptyFalse
Finset.filter_true
add_zero
add_tsub_cancel_right
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
MulZeroClass.zero_mul
Finset.compl_univ
zero_tsub
Nat.instCanonicallyOrderedAdd
Finset.two_lt_card
Finset.mem_insert_self
Finset.union_insert
SimpleGraph.IsPathGraph3Compl.ne_fst
isPathGraph3Compl
SimpleGraph.IsPathGraph3Compl.ne_snd
SimpleGraph.IsPathGraph3Compl.fst_ne_snd
add_mul
Distrib.rightDistribClass
Finset.card_add_card_compl
two_mul
add_le_add_left
notMem_left πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”β€”
notMem_right πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”β€”
not_colorable_succ πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeSimpleGraph.Colorableβ€”SimpleGraph.Coloring.surjOn_of_card_le_isClique
SimpleGraph.IsNClique.isClique
isNClique_fst_left
Fintype.card_fin
SimpleGraph.IsNClique.card_eq
isNClique_snd_right
Finset.coe_insert
SimpleGraph.Coloring.valid
SimpleGraph.IsPathGraph3Compl.adj
isPathGraph3Compl
isNClique_right
notMem_right
isNClique_left
notMem_left
snd_notMem πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”β€”
snd_notMem_left πŸ“–mathematicalSimpleGraph.IsFiveWheelLikeFinset
Finset.instMembership
β€”fst_notMem_right
symm

---

← Back to Index