Documentation Verification Report

Girth

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Girth.lean

Statistics

MetricCount
Definitionsegirth, girth
2
Theoremsegirth_eq_top, girth_eq_zero, egirth_anti, egirth_bot, egirth_eq_top, egirth_le_length, exists_egirth_eq_length, exists_girth_eq_length, girth_anti, girth_bot, girth_eq_zero, girth_le_length, le_egirth, three_le_egirth, three_le_girth
15
Total17

SimpleGraph

Definitions

NameCategoryTheorems
egirth πŸ“–CompOp
8 mathmath: exists_egirth_eq_length, three_le_egirth, egirth_eq_top, egirth_bot, egirth_le_length, egirth_anti, le_egirth, IsAcyclic.egirth_eq_top
girth πŸ“–CompOp
7 mathmath: exists_girth_eq_length, girth_eq_zero, girth_bot, girth_anti, girth_le_length, three_le_girth, IsAcyclic.girth_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
egirth_anti πŸ“–mathematicalβ€”Antitone
SimpleGraph
ENat
PartialOrder.toPreorder
instPartialOrder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
egirth
β€”iInf_mono
iInfβ‚‚_mono'
Walk.IsCycle.mapLe
Walk.length_map
egirth_bot πŸ“–mathematicalβ€”egirth
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
Top.top
ENat
instTopENat
β€”β€”
egirth_eq_top πŸ“–mathematicalβ€”egirth
Top.top
ENat
instTopENat
IsAcyclic
β€”β€”
egirth_le_length πŸ“–mathematicalWalk.IsCycleENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
egirth
ENat.instNatCast
Walk.length
β€”le_egirth
le_rfl
exists_egirth_eq_length πŸ“–mathematicalβ€”Walk.IsCycle
egirth
ENat
ENat.instNatCast
Walk.length
IsAcyclic
β€”iInf_subtype'
iInf_sigma'
ciInf_mem
exists_girth_eq_length πŸ“–mathematicalβ€”Walk.IsCycle
girth
Walk.length
IsAcyclic
β€”exists_egirth_eq_length
girth_anti πŸ“–mathematicalSimpleGraph
instLE
IsAcyclic
girthβ€”ENat.toNat_le_toNat
egirth_anti
Iff.not
egirth_eq_top
girth_bot πŸ“–mathematicalβ€”girth
Bot.bot
SimpleGraph
BooleanAlgebra.toBot
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”egirth_bot
girth_eq_zero πŸ“–mathematicalβ€”girth
IsAcyclic
β€”Function.mt
three_le_girth
girth_le_length πŸ“–mathematicalWalk.IsCyclegirth
Walk.length
β€”ENat.coe_le_coe
LE.le.trans
ENat.coe_toNat_le_self
egirth_le_length
le_egirth πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
egirth
ENat.instNatCast
Walk.length
β€”β€”
three_le_egirth πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
instOfNatAtLeastTwo
ENat.instNatCast
Nat.instAtLeastTwoHAddOfNat
egirth
β€”Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
Walk.IsCycle.three_le_length
three_le_girth πŸ“–mathematicalIsAcyclicgirthβ€”ENat.toNat_le_toNat
Nat.instAtLeastTwoHAddOfNat
three_le_egirth
Iff.not
egirth_eq_top

SimpleGraph.IsAcyclic

Theorems

NameKindAssumesProvesValidatesDepends On
egirth_eq_top πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.egirth
Top.top
ENat
instTopENat
β€”SimpleGraph.egirth_eq_top
girth_eq_zero πŸ“–mathematicalSimpleGraph.IsAcyclicSimpleGraph.girthβ€”SimpleGraph.girth_eq_zero

---

← Back to Index