Documentation Verification Report

Maps

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Maps.lean

Statistics

MetricCount
DefinitionssimpleGraph, comap, comp, complEquiv, completeGraph, induce, map, mapEdgeSet, mapNeighborSet, refl, spanningCoe, toHom, comap, comp, id, instUniqueOfIsEmpty, mapDart, mapEdgeSet, mapNeighborSet, ofLE, HomClass, comap, comp, completeGraph, map, mapEdgeSet, mapNeighborSet, refl, toEmbedding, toHom, comap, completeMultipartiteGraph, induce, induceHom, induceHomOfLE, induceUnivIso, instDecidableComapAdj, instDecidableMapAdj, map, overFin, overFinIso, spanningCoe, Β«term_β†’g_Β», Β«term_β†ͺg_Β», Β«term_≃g_Β»
45
TheoremssimpleGraph_apply, simpleGraph_refl, simpleGraph_trans, symm_simpleGraph, apply_mem_neighborSet_iff, coe_comp, coe_completeGraph, coe_toHom, comap_apply, mapEdgeSet_apply, mapNeighborSet_apply_coe, map_adj_iff, map_apply, map_mem_edgeSet_iff, apply_mem_neighborSet, coe_comp, coe_id, coe_ofLE, comap_apply, injective_of_top_hom, instFinite, instIsEmptyOfForall, instSubsingletonOfForall, mapDart_apply, injective, mapEdgeSet_coe, mapNeighborSet_coe, map_adj, map_mem_edgeSet, ofLE_apply, induce, apply_mem_neighborSet_iff, card_eq, coe_comp, comap_apply, comap_symm_apply, mapEdgeSet_apply, mapEdgeSet_symm_apply, mapNeighborSet_apply_coe, mapNeighborSet_symm_apply_coe, map_adj_iff, map_apply, map_mem_edgeSet_iff, map_symm_apply, symm_toHom_comp_toHom, toEmbedding_completeGraph, toHom_comp_symm_toHom, coe_induceHom, comap_adj, comap_bot, comap_comap, comap_id, comap_map_eq, comap_monotone, comap_surjective, comap_symm, comap_top, edgeSet_map, induceHomOfLE_apply, induceHomOfLE_toHom, induceHom_comp, induceHom_id, induceHom_injective, induceUnivIso_apply, induceUnivIso_symm_apply_coe, induce_adj, induce_singleton_eq_top, induce_spanningCoe, induce_top, le_comap_of_subsingleton, leftInverse_comap_map, map_adj, map_adj_apply, map_comap_le, map_id, map_injective, map_le_iff_le_comap, map_le_of_subsingleton, map_map, map_monotone, map_symm, spanningCoe_induce_le, support_map
83
Total128

Equiv

Definitions

NameCategoryTheorems
simpleGraph πŸ“–CompOp
4 mathmath: simpleGraph_refl, symm_simpleGraph, simpleGraph_trans, simpleGraph_apply

Theorems

NameKindAssumesProvesValidatesDepends On
simpleGraph_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
SimpleGraph
EquivLike.toFunLike
instEquivLike
simpleGraph
SimpleGraph.comap
symm
β€”β€”
simpleGraph_refl πŸ“–mathematicalβ€”simpleGraph
refl
SimpleGraph
β€”Perm.ext
SimpleGraph.ext
simpleGraph_trans πŸ“–mathematicalβ€”simpleGraph
trans
SimpleGraph
β€”β€”
symm_simpleGraph πŸ“–mathematicalβ€”symm
SimpleGraph
simpleGraph
β€”β€”

SimpleGraph

Definitions

NameCategoryTheorems
HomClass πŸ“–MathDefβ€”
comap πŸ“–CompOp
21 mathmath: leftInverse_comap_map, comap_bot, comap_symm, comap_surjective, Hom.comap_apply, map_symm, le_comap_of_subsingleton, comap_adj, IsAcyclic.of_comap, Iso.comap_apply, comap_id, comap_comap, Embedding.comap_apply, Equiv.simpleGraph_apply, comap_map_eq, map_le_iff_le_comap, map_comap_le, comap_top, locallyLinear_comap, Iso.comap_symm_apply, comap_monotone
completeMultipartiteGraph πŸ“–CompOp
10 mathmath: completeMultipartiteGraph.not_cliqueFree_of_le_card, completeMultipartiteGraph.topEmbedding_apply_fst, cliqueFree_completeMultipartiteGraph, completeMultipartiteGraph.not_cliqueFree_of_le_enatCard, completeMultipartiteGraph.chromaticNumber, completeMultipartiteGraph.topEmbedding_apply_snd, completeMultipartiteGraph.colorable, completeMultipartiteGraph.isCompleteMultipartite, isCompleteMultipartite_iff, completeMultipartiteGraph.not_cliqueFree_of_infinite
induce πŸ“–CompOp
48 mathmath: ConnectedComponent.maximal_connected_induce_supp, coe_induceHom, spanningCoe_induce_top, IsAcyclic.induce, isClique_iff_induce_eq, map_edgeFinset_induce_of_support_subset, IsCompleteBetween.induce, Preconnected.induce_of_degree_eq_one, induce_eq_coe_induce_top, Walk.map_induce_induceHomOfLE, induceUnivIso_apply, extend_finset_to_connected, ConnectedComponent.maximal_connected_induce_iff, Walk.map_mapToSubgraph_eq_induce, induceHom_id, induce_deleteIncidenceSet_of_notMem, Walk.induce_cons, Connected.exists_preconnected_induce_compl_singleton_of_finite, induce_pair_connected_of_adj, spanningCoe_induce_le, map_neighborFinset_induce_of_neighborSet_subset, degree_induce_support, Connected.induce_compl_singleton_of_degree_eq_one, induceHom_injective, induceHomOfLE_apply, Walk.map_mapToSubgraph_eq_induce_id, map_neighborFinset_induce, induce_singleton_eq_top, preconnected_induce_iff, connected_induce_iff, degree_induce_of_neighborSet_subset, induceHom_comp, Walk.support_induce, Walk.induce_nil, induceUnivIso_symm_apply_coe, card_edgeFinset_induce_support, Walk.map_induce, degree_induce_of_support_subset, induceHomOfLE_toHom, induce_adj, Connected.exists_connected_induce_compl_singleton_of_finite_nontrivial, induce_spanningCoe, Subgraph.Connected.induce_verts, card_edgeFinset_induce_of_support_subset, induce_top, map_edgeFinset_induce, Walk.connected_induce_support, card_edgeFinset_induce_compl_singleton
induceHom πŸ“–CompOp
5 mathmath: coe_induceHom, induceHom_id, induceHom_injective, induceHom_comp, induceHomOfLE_toHom
induceHomOfLE πŸ“–CompOp
3 mathmath: Walk.map_induce_induceHomOfLE, induceHomOfLE_apply, induceHomOfLE_toHom
induceUnivIso πŸ“–CompOp
2 mathmath: induceUnivIso_apply, induceUnivIso_symm_apply_coe
instDecidableComapAdj πŸ“–CompOp
13 mathmath: map_edgeFinset_induce_of_support_subset, neighborFinset_completeEquipartiteGraph, degree_completeEquipartiteGraph, map_neighborFinset_induce_of_neighborSet_subset, degree_induce_support, map_neighborFinset_induce, degree_induce_of_neighborSet_subset, card_edgeFinset_induce_support, card_edgeFinset_completeEquipartiteGraph, degree_induce_of_support_subset, card_edgeFinset_induce_of_support_subset, map_edgeFinset_induce, card_edgeFinset_induce_compl_singleton
instDecidableMapAdj πŸ“–CompOp
4 mathmath: card_edgeFinset_map, edgeFinset_map, cliqueFinset_map_of_equiv, cliqueFinset_map
map πŸ“–CompOp
37 mathmath: isClique_map_image_iff, leftInverse_comap_map, card_edgeFinset_map, map_le_of_subsingleton, Iso.map_symm_apply, edgeFinset_map, cliqueSet_map_of_equiv, isClique_map_finset_iff, IsNClique.map, comap_symm, cliqueFinset_map_of_equiv, map_adj, cliqueSet_map, isClique_map_finset_iff_of_nontrivial, map_adj_apply, IsClique.finsetMap, cliqueFinset_map, map_symm, map_injective, map_id, map_monotone, isClique_map_iff_of_nontrivial, LocallyLinear.map, isNClique_map_iff, Embedding.map_apply, Colorable.map, edgeSet_map, map_map, support_map, EdgeDisjointTriangles.map, comap_map_eq, cliqueFree_map_iff, map_le_iff_le_comap, isClique_map_iff, map_comap_le, Iso.map_apply, IsClique.map
overFin πŸ“–CompOpβ€”
overFinIso πŸ“–CompOpβ€”
spanningCoe πŸ“–CompOp
7 mathmath: spanningCoe_induce_top, IsCycles.toSimpleGraph, ConnectedComponent.adj_spanningCoe_toSimpleGraph, spanningCoe_induce_le, ConnectedComponent.spanningCoe_toSubgraph, Subgraph.spanningCoe_coe, induce_spanningCoe
Β«term_β†’g_Β» πŸ“–CompOpβ€”
Β«term_β†ͺg_Β» πŸ“–CompOpβ€”
Β«term_≃g_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_induceHom πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Hom
RelHom.instFunLike
Adj
Set.Elem
induce
induceHom
Set.MapsTo.restrict
β€”β€”
comap_adj πŸ“–mathematicalβ€”Adj
comap
β€”β€”
comap_bot πŸ“–mathematicalβ€”comap
emptyGraph
β€”β€”
comap_comap πŸ“–mathematicalβ€”comapβ€”β€”
comap_id πŸ“–mathematicalβ€”comapβ€”ext
comap_map_eq πŸ“–mathematicalβ€”comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
map
β€”ext
Function.instEmbeddingLikeEmbedding
comap_monotone πŸ“–mathematicalβ€”Monotone
SimpleGraph
PartialOrder.toPreorder
instPartialOrder
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
comap_surjective πŸ“–mathematicalβ€”SimpleGraph
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.LeftInverse.surjective
leftInverse_comap_map
comap_symm πŸ“–mathematicalβ€”comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Equiv.toEmbedding
Equiv.symm
map
β€”ext
comap_top πŸ“–mathematicalβ€”comap
completeGraph
β€”ext
edgeSet_map πŸ“–mathematicalβ€”edgeSet
map
Set.image
Sym2
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
Function.Embedding.sym2Map
β€”Set.ext
Sym2.ind
mem_edgeSet
map_adj
Set.mem_image
Function.Embedding.sym2Map_apply
Sym2.eq_iff
Adj.symm
induceHomOfLE_apply πŸ“–mathematicalSet
Set.instLE
DFunLike.coe
Embedding
Set.Elem
induce
RelEmbedding.instFunLike
Adj
induceHomOfLE
Set.inclusion
β€”β€”
induceHomOfLE_toHom πŸ“–mathematicalSet
Set.instLE
Embedding.toHom
Set.Elem
induce
induceHomOfLE
induceHom
Hom.id
Set.MapsTo.mono_right
Set.mapsTo_id
β€”RelHom.ext
Set.MapsTo.mono_right
Set.mapsTo_id
induceHom_comp πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Hom
RelHom.instFunLike
Adj
Hom.comp
Set.Elem
induce
induceHom
Set.MapsTo.comp
RelHom
β€”RelHom.ext
Set.MapsTo.comp
induceHom_id πŸ“–mathematicalβ€”induceHom
Hom.id
Set.mapsTo_id
Set.Elem
induce
β€”RelHom.ext
Set.mapsTo_id
induceHom_injective πŸ“–mathematicalSet.MapsTo
DFunLike.coe
Hom
RelHom.instFunLike
Adj
Set.InjOn
Set.Elem
induce
induceHom
β€”β€”
induceUnivIso_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Set.Elem
Set.univ
Adj
induce
RelIso.instFunLike
induceUnivIso
Set
Set.instMembership
β€”β€”
induceUnivIso_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
Set.univ
DFunLike.coe
RelIso
Set.Elem
Adj
induce
RelIso.instFunLike
RelIso.symm
induceUnivIso
β€”β€”
induce_adj πŸ“–mathematicalβ€”Adj
Set.Elem
induce
Set
Set.instMembership
β€”β€”
induce_singleton_eq_top πŸ“–mathematicalβ€”induce
Set
Set.instSingletonSet
Top.top
SimpleGraph
Set.Elem
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
completeAtomicBooleanAlgebra
β€”eq_top_iff
le_comap_of_subsingleton
Unique.instSubsingleton
induce_spanningCoe πŸ“–mathematicalβ€”induce
spanningCoe
β€”comap_map_eq
induce_top πŸ“–mathematicalβ€”induce
completeGraph
Set.Elem
β€”comap_top
Subtype.val_injective
le_comap_of_subsingleton πŸ“–mathematicalβ€”SimpleGraph
instLE
comap
β€”β€”
leftInverse_comap_map πŸ“–mathematicalβ€”SimpleGraph
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
map
β€”comap_map_eq
map_adj πŸ“–mathematicalβ€”Adj
map
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
map_adj_apply πŸ“–mathematicalβ€”Adj
map
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.instEmbeddingLikeEmbedding
map_comap_le πŸ“–mathematicalβ€”SimpleGraph
instLE
map
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”map_le_iff_le_comap
le_refl
map_id πŸ“–mathematicalβ€”map
Function.Embedding.refl
β€”ext
Relation.map_id_id
map_injective πŸ“–mathematicalβ€”SimpleGraph
map
β€”leftInverse_comap_map
map_le_iff_le_comap πŸ“–mathematicalβ€”SimpleGraph
instLE
map
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
map_le_of_subsingleton πŸ“–mathematicalβ€”SimpleGraph
instLE
map
β€”map_le_iff_le_comap
le_comap_of_subsingleton
map_map πŸ“–mathematicalβ€”map
Function.Embedding.trans
β€”ext
Relation.map_map
map_monotone πŸ“–mathematicalβ€”Monotone
SimpleGraph
PartialOrder.toPreorder
instPartialOrder
map
β€”β€”
map_symm πŸ“–mathematicalβ€”map
Equiv.toEmbedding
Equiv.symm
comap
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”comap_symm
Equiv.symm_symm
spanningCoe_induce_le πŸ“–mathematicalβ€”SimpleGraph
instLE
spanningCoe
induce
β€”map_comap_le
support_map πŸ“–mathematicalβ€”support
map
Set.image
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
β€”Set.ext

SimpleGraph.Embedding

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
1 mathmath: comap_apply
comp πŸ“–CompOp
1 mathmath: coe_comp
complEquiv πŸ“–CompOpβ€”
completeGraph πŸ“–CompOp
5 mathmath: SimpleGraph.coe_recolorOfEmbedding, SimpleGraph.coe_recolorOfEquiv, coe_completeGraph, SimpleGraph.Iso.toEmbedding_completeGraph, SimpleGraph.coe_recolorOfCardLE
induce πŸ“–CompOp
1 mathmath: SimpleGraph.Walk.map_induce
map πŸ“–CompOp
1 mathmath: map_apply
mapEdgeSet πŸ“–CompOp
1 mathmath: mapEdgeSet_apply
mapNeighborSet πŸ“–CompOp
1 mathmath: mapNeighborSet_apply_coe
refl πŸ“–CompOpβ€”
spanningCoe πŸ“–CompOpβ€”
toHom πŸ“–CompOp
8 mathmath: SimpleGraph.Path.mapEmbedding_coe, SimpleGraph.Walk.map_induce_induceHomOfLE, SimpleGraph.coe_recolorOfEmbedding, SimpleGraph.coe_recolorOfEquiv, SimpleGraph.Walk.map_induce, SimpleGraph.induceHomOfLE_toHom, coe_toHom, SimpleGraph.coe_recolorOfCardLE

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_neighborSet_iff πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Embedding
RelEmbedding.instFunLike
SimpleGraph.Adj
β€”map_adj_iff
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Embedding
RelEmbedding.instFunLike
SimpleGraph.Adj
comp
β€”β€”
coe_completeGraph πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Embedding
SimpleGraph.completeGraph
RelEmbedding.instFunLike
SimpleGraph.Adj
completeGraph
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
coe_toHom πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
toHom
SimpleGraph.Embedding
RelEmbedding.instFunLike
β€”β€”
comap_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Embedding
SimpleGraph.comap
Function.Embedding
Function.instFunLikeEmbedding
RelEmbedding.instFunLike
SimpleGraph.Adj
comap
β€”β€”
mapEdgeSet_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Set.Elem
Sym2
SimpleGraph.edgeSet
Function.instFunLikeEmbedding
mapEdgeSet
SimpleGraph.Hom.mapEdgeSet
RelEmbedding.toRelHom
SimpleGraph.Adj
β€”β€”
mapNeighborSet_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Embedding
RelEmbedding.instFunLike
SimpleGraph.Adj
Function.Embedding
Set.Elem
Function.instFunLikeEmbedding
mapNeighborSet
β€”β€”
map_adj_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
DFunLike.coe
SimpleGraph.Embedding
RelEmbedding.instFunLike
β€”RelEmbedding.map_rel_iff
map_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Embedding
SimpleGraph.map
RelEmbedding.instFunLike
SimpleGraph.Adj
map
Function.Embedding
Function.instFunLikeEmbedding
β€”β€”
map_mem_edgeSet_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
SimpleGraph.edgeSet
Sym2.map
DFunLike.coe
SimpleGraph.Embedding
RelEmbedding.instFunLike
SimpleGraph.Adj
β€”Sym2.ind
map_adj_iff

SimpleGraph.Hom

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
1 mathmath: comap_apply
comp πŸ“–CompOp
10 mathmath: SimpleGraph.Walk.map_map, SimpleGraph.Subgraph.map_comp, coe_comp, SimpleGraph.coe_recolorOfEmbedding, SimpleGraph.Iso.symm_toHom_comp_toHom, SimpleGraph.ConnectedComponent.map_comp, SimpleGraph.coe_recolorOfEquiv, SimpleGraph.induceHom_comp, SimpleGraph.Iso.toHom_comp_symm_toHom, SimpleGraph.coe_recolorOfCardLE
id πŸ“–CompOp
8 mathmath: coe_id, SimpleGraph.induceHom_id, SimpleGraph.ConnectedComponent.map_id, SimpleGraph.Walk.map_id, SimpleGraph.Iso.symm_toHom_comp_toHom, SimpleGraph.Iso.toHom_comp_symm_toHom, SimpleGraph.Subgraph.map_id, SimpleGraph.induceHomOfLE_toHom
instUniqueOfIsEmpty πŸ“–CompOpβ€”
mapDart πŸ“–CompOp
2 mathmath: SimpleGraph.Walk.darts_map, mapDart_apply
mapEdgeSet πŸ“–CompOp
6 mathmath: SimpleGraph.EdgeLabeling.pullback_apply, mapEdgeSet_coe, mapEdgeSet.injective, SimpleGraph.Embedding.mapEdgeSet_apply, SimpleGraph.Iso.mapEdgeSet_apply, SimpleGraph.Iso.mapEdgeSet_symm_apply
mapNeighborSet πŸ“–CompOp
1 mathmath: mapNeighborSet_coe
ofLE πŸ“–CompOp
6 mathmath: SimpleGraph.Walk.transfer_eq_map_ofLE, SimpleGraph.Walk.map_toDeleteEdges_eq, SimpleGraph.ConnectedComponent.surjective_map_ofLE, SimpleGraph.Subgraph.IsMatching.map_ofLE, coe_ofLE, ofLE_apply

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_neighborSet πŸ“–mathematicalSet
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
β€”map_adj
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
comp
β€”β€”
coe_id πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
id
β€”β€”
coe_ofLE πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
ofLE
β€”β€”
comap_apply πŸ“–mathematicalβ€”DFunLike.coe
RelHom
SimpleGraph.Adj
SimpleGraph.comap
RelHom.instFunLike
comap
β€”β€”
injective_of_top_hom πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Hom
Top.top
SimpleGraph
BooleanAlgebra.toTop
CompleteBooleanAlgebra.toBooleanAlgebra
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
SimpleGraph.completeAtomicBooleanAlgebra
RelHom.instFunLike
SimpleGraph.Adj
β€”Mathlib.Tactic.Contrapose.contrapose₁
SimpleGraph.ne_of_adj
map_adj
SimpleGraph.top_adj
instFinite πŸ“–mathematicalβ€”Finite
SimpleGraph.Hom
β€”DFunLike.finite
instIsEmptyOfForall πŸ“–mathematicalβ€”IsEmpty
SimpleGraph.Hom
β€”Function.isEmpty
instSubsingletonOfForall πŸ“–mathematicalβ€”SimpleGraph.Homβ€”Function.Injective.subsingleton
DFunLike.coe_injective
mapDart_apply πŸ“–mathematicalβ€”mapDart
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
SimpleGraph.Dart.toProd
map_adj
SimpleGraph.Dart.adj
β€”β€”
mapEdgeSet_coe πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
SimpleGraph.edgeSet
mapEdgeSet
Sym2.map
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
β€”β€”
mapNeighborSet_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
mapNeighborSet
β€”β€”
map_adj πŸ“–mathematicalSimpleGraph.AdjDFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
β€”RelHom.map_rel'
map_mem_edgeSet πŸ“–mathematicalSym2
Set
Set.instMembership
SimpleGraph.edgeSet
Sym2.map
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
β€”Sym2.ind
RelHom.map_rel'
ofLE_apply πŸ“–mathematicalSimpleGraph
SimpleGraph.instLE
DFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
ofLE
β€”β€”

SimpleGraph.Hom.mapEdgeSet

Theorems

NameKindAssumesProvesValidatesDepends On
injective πŸ“–mathematicalDFunLike.coe
SimpleGraph.Hom
RelHom.instFunLike
SimpleGraph.Adj
Set.Elem
Sym2
SimpleGraph.edgeSet
SimpleGraph.Hom.mapEdgeSet
β€”Sym2.map.injective

SimpleGraph.IsCompleteBetween

Theorems

NameKindAssumesProvesValidatesDepends On
induce πŸ“–mathematicalSimpleGraph.IsCompleteBetweenSet.Elem
SimpleGraph.induce
Set.preimage
Set
Set.instMembership
β€”SimpleGraph.comap_adj
Function.Embedding.coe_subtype

SimpleGraph.Iso

Definitions

NameCategoryTheorems
comap πŸ“–CompOp
2 mathmath: comap_apply, comap_symm_apply
comp πŸ“–CompOp
1 mathmath: coe_comp
completeGraph πŸ“–CompOp
1 mathmath: toEmbedding_completeGraph
map πŸ“–CompOp
2 mathmath: map_symm_apply, map_apply
mapEdgeSet πŸ“–CompOp
2 mathmath: mapEdgeSet_apply, mapEdgeSet_symm_apply
mapNeighborSet πŸ“–CompOp
2 mathmath: mapNeighborSet_apply_coe, mapNeighborSet_symm_apply_coe
refl πŸ“–CompOp
1 mathmath: connectedComponentEquiv_refl
toEmbedding πŸ“–CompOp
1 mathmath: toEmbedding_completeGraph
toHom πŸ“–CompOp
4 mathmath: SimpleGraph.Subgraph.map_iso_top, symm_toHom_comp_toHom, toHom_comp_symm_toHom, SimpleGraph.Subgraph.Iso.isMatching_map

Theorems

NameKindAssumesProvesValidatesDepends On
apply_mem_neighborSet_iff πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
β€”map_adj_iff
card_eq πŸ“–mathematicalβ€”Fintype.cardβ€”Fintype.ofEquiv_card
Fintype.card_congr'
coe_comp πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
comp
β€”β€”
comap_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Iso
SimpleGraph.comap
Function.Embedding
Function.instFunLikeEmbedding
Equiv.toEmbedding
RelIso.instFunLike
SimpleGraph.Adj
comap
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
comap_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Iso
SimpleGraph.comap
Function.Embedding
Function.instFunLikeEmbedding
Equiv.toEmbedding
RelIso.instFunLike
SimpleGraph.Adj
symm
comap
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
mapEdgeSet_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
Sym2
SimpleGraph.edgeSet
EquivLike.toFunLike
Equiv.instEquivLike
mapEdgeSet
SimpleGraph.Hom.mapEdgeSet
RelEmbedding.toRelHom
SimpleGraph.Adj
RelIso.toRelEmbedding
β€”β€”
mapEdgeSet_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
Set.Elem
Sym2
SimpleGraph.edgeSet
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mapEdgeSet
SimpleGraph.Hom.mapEdgeSet
RelEmbedding.toRelHom
SimpleGraph.Adj
RelIso.toRelEmbedding
symm
β€”β€”
mapNeighborSet_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
Equiv
Set.Elem
EquivLike.toFunLike
Equiv.instEquivLike
mapNeighborSet
β€”β€”
mapNeighborSet_symm_apply_coe πŸ“–mathematicalβ€”Set
Set.instMembership
SimpleGraph.neighborSet
DFunLike.coe
Equiv
Set.Elem
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
mapNeighborSet
symm
β€”β€”
map_adj_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
β€”RelIso.map_rel_iff
map_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Iso
SimpleGraph.map
Equiv.toEmbedding
RelIso.instFunLike
SimpleGraph.Adj
map
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”β€”
map_mem_edgeSet_iff πŸ“–mathematicalβ€”Sym2
Set
Set.instMembership
SimpleGraph.edgeSet
Sym2.map
DFunLike.coe
SimpleGraph.Iso
RelIso.instFunLike
SimpleGraph.Adj
β€”Sym2.ind
map_adj_iff
map_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
SimpleGraph.Iso
SimpleGraph.map
Equiv.toEmbedding
RelIso.instFunLike
SimpleGraph.Adj
symm
map
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
β€”β€”
symm_toHom_comp_toHom πŸ“–mathematicalβ€”SimpleGraph.Hom.comp
toHom
symm
SimpleGraph.Hom.id
β€”RelHom.ext
RelIso.symm_apply_apply
toEmbedding_completeGraph πŸ“–mathematicalβ€”toEmbedding
SimpleGraph.completeGraph
completeGraph
SimpleGraph.Embedding.completeGraph
Equiv.toEmbedding
β€”β€”
toHom_comp_symm_toHom πŸ“–mathematicalβ€”SimpleGraph.Hom.comp
toHom
symm
SimpleGraph.Hom.id
β€”RelHom.ext
RelIso.apply_symm_apply

---

← Back to Index