Documentation Verification Report

Prod

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Prod.lean

Statistics

MetricCount
DefinitionsboxProdSumDistrib, sumBoxProdDistrib, boxProdLeft, boxProdRight, ofBoxProdLeft, ofBoxProdRight, boxProd, boxProdAssoc, boxProdComm, boxProdFintypeNeighborSet, boxProdLeft, boxProdRight, Β«term_β–‘_Β»
13
TheoremsboxProd, ofBoxProdLeft, ofBoxProdRight, boxProdSumDistrib_apply, boxProdSumDistrib_symm_apply, boxProdSumDistrib_toEquiv, sumBoxProdDistrib_apply, sumBoxProdDistrib_symm_apply, sumBoxProdDistrib_toEquiv, boxProd, ofBoxProdLeft, ofBoxProdRight, length_boxProd, ofBoxProdLeft_boxProdLeft, ofBoxProdRight_boxProdRight, boxProdAssoc_apply, boxProdAssoc_symm_apply, boxProdComm_apply, boxProdComm_symm_apply, boxProdLeft_apply, boxProdRight_apply, boxProd_adj, boxProd_adj_left, boxProd_adj_right, connected_boxProd, degree_boxProd, edist_boxProd, neighborFinset_boxProd, neighborSet_boxProd, reachable_boxProd
30
Total43

SimpleGraph

Definitions

NameCategoryTheorems
boxProd πŸ“–CompOp
25 mathmath: boxProd_adj_right, Iso.sumBoxProdDistrib_apply, Connected.boxProd, hasse_prod, boxProd_adj_left, boxProdComm_symm_apply, neighborFinset_boxProd, boxProdAssoc_apply, Walk.length_boxProd, reachable_boxProd, Iso.boxProdSumDistrib_symm_apply, Iso.boxProdSumDistrib_apply, Iso.boxProdSumDistrib_toEquiv, boxProd_adj, boxProdAssoc_symm_apply, neighborSet_boxProd, Iso.sumBoxProdDistrib_symm_apply, boxProdRight_apply, edist_boxProd, Iso.sumBoxProdDistrib_toEquiv, Preconnected.boxProd, boxProdLeft_apply, degree_boxProd, boxProdComm_apply, connected_boxProd
boxProdAssoc πŸ“–CompOp
2 mathmath: boxProdAssoc_apply, boxProdAssoc_symm_apply
boxProdComm πŸ“–CompOp
2 mathmath: boxProdComm_symm_apply, boxProdComm_apply
boxProdFintypeNeighborSet πŸ“–CompOpβ€”
boxProdLeft πŸ“–CompOp
1 mathmath: boxProdLeft_apply
boxProdRight πŸ“–CompOp
1 mathmath: boxProdRight_apply
Β«term_β–‘_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
boxProdAssoc_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Adj
boxProd
RelIso.instFunLike
boxProdAssoc
β€”β€”
boxProdAssoc_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Adj
boxProd
RelIso.instFunLike
RelIso.symm
boxProdAssoc
β€”β€”
boxProdComm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Adj
boxProd
RelIso.instFunLike
boxProdComm
β€”β€”
boxProdComm_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
Adj
boxProd
RelIso.instFunLike
RelIso.symm
boxProdComm
β€”β€”
boxProdLeft_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Adj
boxProd
RelEmbedding.instFunLike
boxProdLeft
β€”β€”
boxProdRight_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
Adj
boxProd
RelEmbedding.instFunLike
boxProdRight
β€”β€”
boxProd_adj πŸ“–mathematicalβ€”Adj
boxProd
β€”β€”
boxProd_adj_left πŸ“–mathematicalβ€”Adj
boxProd
β€”β€”
boxProd_adj_right πŸ“–mathematicalβ€”Adj
boxProd
β€”β€”
connected_boxProd πŸ“–mathematicalβ€”Connected
boxProd
β€”Connected.ofBoxProdLeft
Connected.ofBoxProdRight
Connected.boxProd
degree_boxProd πŸ“–mathematicalβ€”degree
boxProd
β€”degree.eq_1
Finset.disjoint_product
neighborFinset_disjoint_singleton
neighborFinset_boxProd
Finset.card_disjUnion
Finset.card_product
Finset.card_singleton
mul_one
one_mul
edist_boxProd πŸ“–mathematicalβ€”edist
boxProd
ENat
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiringENat
β€”top_add
add_top
exists_walk_of_edist_ne_top
Walk.length_append
Walk.length_map
le_antisymm
edist_le
Walk.length_boxProd
add_le_add
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
neighborFinset_boxProd πŸ“–mathematicalβ€”neighborFinset
boxProd
Finset.disjUnion
SProd.sprod
Finset
Finset.instSProd
Finset.instSingleton
Disjoint
Finset.partialOrder
Finset.instOrderBot
Finset.disjoint_product
neighborFinset_disjoint_singleton
β€”Finset.disjoint_product
neighborFinset_disjoint_singleton
Lean.Meta.FastSubsingleton.elim
Fintype.instFastSubsingleton
Equiv.bijective
Finset.map_map
Finset.attach_map_val
neighborSet_boxProd πŸ“–mathematicalβ€”neighborSet
boxProd
Set
Set.instUnion
SProd.sprod
Set.instSProd
Set.instSingletonSet
β€”Set.ext
reachable_boxProd πŸ“–mathematicalβ€”Reachable
boxProd
β€”β€”

SimpleGraph.Connected

Theorems

NameKindAssumesProvesValidatesDepends On
boxProd πŸ“–mathematicalSimpleGraph.ConnectedSimpleGraph.boxProdβ€”SimpleGraph.Preconnected.boxProd
preconnected
nonempty
ofBoxProdLeft πŸ“–β€”SimpleGraph.Connected
SimpleGraph.boxProd
β€”β€”SimpleGraph.Preconnected.ofBoxProdLeft
nonempty_prod
nonempty
preconnected
ofBoxProdRight πŸ“–β€”SimpleGraph.Connected
SimpleGraph.boxProd
β€”β€”SimpleGraph.Preconnected.ofBoxProdRight
nonempty_prod
nonempty
preconnected

SimpleGraph.Iso

Definitions

NameCategoryTheorems
boxProdSumDistrib πŸ“–CompOp
3 mathmath: boxProdSumDistrib_symm_apply, boxProdSumDistrib_apply, boxProdSumDistrib_toEquiv
sumBoxProdDistrib πŸ“–CompOp
3 mathmath: sumBoxProdDistrib_apply, sumBoxProdDistrib_symm_apply, sumBoxProdDistrib_toEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
boxProdSumDistrib_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.boxProd
SimpleGraph.sum
RelIso.instFunLike
boxProdSumDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.sumProdDistrib
β€”β€”
boxProdSumDistrib_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
SimpleGraph.boxProd
RelIso.instFunLike
RelIso.symm
boxProdSumDistrib
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Equiv.sumProdDistrib
β€”β€”
boxProdSumDistrib_toEquiv πŸ“–mathematicalβ€”RelIso.toEquiv
SimpleGraph.Adj
SimpleGraph.boxProd
SimpleGraph.sum
boxProdSumDistrib
Equiv.prodSumDistrib
β€”β€”
sumBoxProdDistrib_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.boxProd
SimpleGraph.sum
RelIso.instFunLike
sumBoxProdDistrib
β€”β€”
sumBoxProdDistrib_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
SimpleGraph.boxProd
RelIso.instFunLike
RelIso.symm
sumBoxProdDistrib
β€”β€”
sumBoxProdDistrib_toEquiv πŸ“–mathematicalβ€”RelIso.toEquiv
SimpleGraph.Adj
SimpleGraph.boxProd
SimpleGraph.sum
sumBoxProdDistrib
Equiv.sumProdDistrib
β€”β€”

SimpleGraph.Preconnected

Theorems

NameKindAssumesProvesValidatesDepends On
boxProd πŸ“–mathematicalSimpleGraph.PreconnectedSimpleGraph.boxProdβ€”β€”
ofBoxProdLeft πŸ“–β€”SimpleGraph.Preconnected
SimpleGraph.boxProd
β€”β€”β€”
ofBoxProdRight πŸ“–β€”SimpleGraph.Preconnected
SimpleGraph.boxProd
β€”β€”β€”

SimpleGraph.Walk

Definitions

NameCategoryTheorems
boxProdLeft πŸ“–CompOp
1 mathmath: ofBoxProdLeft_boxProdLeft
boxProdRight πŸ“–CompOp
1 mathmath: ofBoxProdRight_boxProdRight
ofBoxProdLeft πŸ“–CompOp
2 mathmath: length_boxProd, ofBoxProdLeft_boxProdLeft
ofBoxProdRight πŸ“–CompOp
2 mathmath: length_boxProd, ofBoxProdRight_boxProdRight

Theorems

NameKindAssumesProvesValidatesDepends On
length_boxProd πŸ“–mathematicalβ€”length
SimpleGraph.boxProd
ofBoxProdLeft
ofBoxProdRight
β€”β€”
ofBoxProdLeft_boxProdLeft πŸ“–mathematicalβ€”ofBoxProdLeft
boxProdLeft
β€”boxProdLeft.eq_1
SimpleGraph.Hom.map_adj
map_cons
ofBoxProdLeft.eq_2
Or.by_cases.eq_1
cons.congr_simp
ofBoxProdRight_boxProdRight πŸ“–mathematicalβ€”ofBoxProdRight
boxProdRight
β€”boxProdRight.eq_1
SimpleGraph.Hom.map_adj
map_cons
ofBoxProdRight.eq_2
Or.by_cases.eq_1
cons.congr_simp

---

← Back to Index