Documentation Verification Report

Bound

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Regularity/Bound.lean

Statistics

MetricCount
DefinitionsevalBound, evalInitialBound, tacticSz_positivity, initialBound, stepBound
5
Theoremsa_add_one_le_four_pow_parts_card, add_div_le_sum_sq_div_card, bound_pos, card_aux₁, card_auxβ‚‚, coe_m_add_one_pos, coe_stepBound, eps_pos, eps_pow_five_pos, hundred_div_Ξ΅_pow_five_le_m, hundred_le_m, hundred_lt_pow_initialBound_mul, initialBound_le_bound, initialBound_pos, le_bound, le_initialBound, le_stepBound, m_pos, mul_sq_le_sum_sq, one_le_m_coe, pow_mul_m_le_card_part, seven_le_initialBound, stepBound_mono, stepBound_pos, stepBound_pos_iff
25
Total30

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalBound πŸ“–CompOpβ€”
evalInitialBound πŸ“–CompOpβ€”

SzemerediRegularity

Definitions

NameCategoryTheorems
initialBound πŸ“–CompOp
5 mathmath: initialBound_le_bound, hundred_lt_pow_initialBound_mul, seven_le_initialBound, initialBound_pos, le_initialBound
stepBound πŸ“–CompOp
18 mathmath: stepBound_pos, a_add_one_le_four_pow_parts_card, m_le_card_of_mem_chunk_parts, card_increment, coe_stepBound, card_le_m_add_one_of_mem_chunk_parts, stepBound_pos_iff, m_pos, card_eq_of_mem_parts_chunk, hundred_div_Ξ΅_pow_five_le_m, le_stepBound, pow_mul_m_le_card_part, one_le_m_coe, coe_m_add_one_pos, card_auxβ‚‚, stepBound_mono, card_biUnion_star_le_m_add_one_card_star_mul, hundred_le_m

Theorems

NameKindAssumesProvesValidatesDepends On
a_add_one_le_four_pow_parts_card πŸ“–mathematicalβ€”Fintype.card
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
stepBound
Monoid.toNatPow
Nat.instMonoid
β€”one_le_powβ‚€
Nat.instZeroLEOneClass
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Nat.instCharZero
stepBound.eq_1
add_le_add_iff_right
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
tsub_le_iff_left
Nat.instOrderedSub
add_div_le_sum_sq_div_card πŸ“–mathematicalFinset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
abs
AddGroupWithOne.toAddGroup
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Finset.card
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Distrib.toMul
β€”LE.le.eq_or_lt
Nat.cast_nonneg
IsStrictOrderedRing.toIsOrderedRing
zero_div
MulZeroClass.zero_mul
add_zero
LE.le.trans
sum_div_card_sq_le_sum_sq_div_card
AddGroup.existsAddOfLE
LT.lt.trans_le
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_le_card
sq_le_sq
abs_of_nonneg
Finset.sum_sub_distrib
Finset.sum_const
nsmul_eq_mul
sub_div
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
LT.lt.ne'
le_refl
le_imp_le_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
mul_div_right_comm
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
add_mul
Distrib.rightDistribClass
div_mul_cancelβ‚€
mul_sq_le_sum_sq
add_le_add_right
div_pow
Finset.sum_congr
sub_div'
Nat.instAtLeastTwoHAddOfNat
sub_sq
mul_pow
two_mul
Finset.sum_add_distrib
div_le_iffβ‚€
sq_pos_of_ne_zero
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
bound_pos πŸ“–mathematicalβ€”boundβ€”LT.lt.trans_le
initialBound_pos
initialBound_le_bound
card_aux₁ πŸ“–β€”Finset.card
Fintype.card
stepBound
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Monoid.toNatPow
Nat.instMonoid
β€”β€”mul_add
Distrib.leftDistribClass
mul_one
add_assoc
add_mul
Distrib.rightDistribClass
LE.le.trans
a_add_one_le_four_pow_parts_card
mul_comm
card_auxβ‚‚ πŸ“–mathematicalFinpartition.IsEquipartition
Finset.univ
Finset
Finset.instMembership
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Monoid.toNatPow
Nat.instMonoid
Finset.card
Fintype.card
stepBound
β€”stepBound.eq_1
Finpartition.IsEquipartition.card_parts_eq_average
mul_add
Distrib.leftDistribClass
mul_one
add_assoc
add_mul
Distrib.rightDistribClass
a_add_one_le_four_pow_parts_card
mul_comm
Finset.card_univ
coe_m_add_one_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Real.instAdd
Real.instNatCast
Fintype.card
stepBound
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Real.instOne
β€”Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Nat.cast_nonneg'
Real.instZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
coe_stepBound πŸ“–mathematicalβ€”AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
Semiring.toNonAssocSemiring
stepBound
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
eps_pos πŸ“–mathematicalReal
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Monoid.toNatPow
Real.instMonoid
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Real.instLT
Real.instZero
β€”Nat.instAtLeastTwoHAddOfNat
Odd.pow_pos_iff
Real.instIsStrictOrderedRing
AddGroup.existsAddOfLE
eps_pow_five_pos
eps_pow_five_pos πŸ“–mathematicalReal
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Monoid.toNatPow
Real.instMonoid
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Real.instLT
Real.instZero
β€”Nat.instAtLeastTwoHAddOfNat
pos_of_mul_pos_right
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
LT.lt.trans_le
Real.instIsOrderedRing
Real.instNontrivial
le_of_lt
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
hundred_div_Ξ΅_pow_five_le_m πŸ“–mathematicalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instMonoid
DivInvMonoid.toDiv
Real.instDivInvMonoid
stepBound
β€”Nat.instAtLeastTwoHAddOfNat
LE.le.trans
div_le_of_le_mulβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
LT.lt.le
eps_pow_five_pos
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
stepBound_pos
Finset.Nonempty.card_pos
Finpartition.parts_nonempty
Finset.Nonempty.ne_empty
Finset.univ_nonempty
stepBound.eq_1
mul_left_comm
mul_pow
hundred_le_m πŸ“–mathematicalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instMonoid
Real.instOne
stepBoundβ€”Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
LE.le.trans'
hundred_div_Ξ΅_pow_five_le_m
le_div_self
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instIsOrderedRing
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
pow_le_oneβ‚€
IsOrderedRing.toPosMulMono
le_of_lt
hundred_lt_pow_initialBound_mul πŸ“–mathematicalReal
Real.instLT
Real.instZero
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Monoid.toNatPow
Real.instMonoid
initialBound
β€”Nat.instAtLeastTwoHAddOfNat
Real.rpow_natCast
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
Real.lt_rpow_iff_log_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.instIsOrderedRing
Real.instNontrivial
zero_lt_four
NeZero.charZero_one
RCLike.charZero_rclike
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.log_pos
initialBound.eq_1
Nat.cast_max
Nat.cast_add
Nat.cast_one
lt_max_of_lt_right
Nat.lt_floor_add_one
initialBound_le_bound πŸ“–mathematicalβ€”initialBound
bound
β€”LE.le.trans
Real.instIsStrictOrderedRing
Function.id_le_iterate_of_id_le
le_stepBound
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
initialBound_pos πŸ“–mathematicalβ€”initialBoundβ€”LT.lt.trans_le
Nat.succ_pos'
seven_le_initialBound
le_bound πŸ“–mathematicalβ€”boundβ€”LE.le.trans
le_initialBound
initialBound_le_bound
le_initialBound πŸ“–mathematicalβ€”initialBoundβ€”LE.le.trans
Real.instIsStrictOrderedRing
le_max_left
le_max_right
le_stepBound πŸ“–mathematicalβ€”Pi.hasLe
stepBound
β€”pow_pos
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
Nat.instZeroLEOneClass
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
m_pos πŸ“–mathematicalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Monoid.toNatPow
Nat.instMonoid
Fintype.card
stepBoundβ€”β€”
mul_sq_le_sum_sq πŸ“–mathematicalFinset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
Finset.sum
NonUnitalNonAssocSemiring.toAddCommMonoid
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Finset.card
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
LE.le.trans
sum_div_card_sq_le_sum_sq_div_card
AddGroup.existsAddOfLE
le_of_lt
lt_of_le_of_ne'
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
mul_div_cancelβ‚€
Finset.sum_le_sum_of_subset_of_nonneg
Even.pow_nonneg
Nat.instAtLeastTwoHAddOfNat
even_two_mul
one_le_m_coe πŸ“–mathematicalFinset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.univ
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Real
Real.instLE
Real.instOne
Real.instNatCast
stepBound
β€”Nat.one_le_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
m_pos
pow_mul_m_le_card_part πŸ“–mathematicalFinpartition.IsEquipartition
Finset.univ
Finset
Finset.instMembership
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Real
Real.instLE
Real.instMul
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset.card
Fintype.card
stepBound
β€”Nat.instAtLeastTwoHAddOfNat
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
stepBound.eq_1
LE.le.trans
Finpartition.IsEquipartition.average_le_card_part
seven_le_initialBound πŸ“–mathematicalβ€”initialBoundβ€”le_max_left
Real.instIsStrictOrderedRing
stepBound_mono πŸ“–mathematicalβ€”Monotone
Nat.instPreorder
stepBound
β€”mul_le_mul'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
pow_le_pow_right'
stepBound_pos πŸ“–mathematicalβ€”stepBoundβ€”stepBound_pos_iff
stepBound_pos_iff πŸ“–mathematicalβ€”stepBoundβ€”mul_pos_iff_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Nat.instIsStrictOrderedRing
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat

SzemerediRegularity.Positivity

Definitions

NameCategoryTheorems
tacticSz_positivity πŸ“–CompOpβ€”

---

← Back to Index