Documentation Verification Report

Equitabilise

📁 Source: Mathlib/Combinatorics/SimpleGraph/Regularity/Equitabilise.lean

Statistics

MetricCount
Definitionsequitabilise
1
Theoremscard_eq_of_mem_parts_equitabilise, card_filter_equitabilise_big, card_filter_equitabilise_small, card_parts_equitabilise, card_parts_equitabilise_subset_le, equitabilise_aux, equitabilise_isEquipartition, exists_equipartition_card_eq
8
Total9

Finpartition

Definitions

NameCategoryTheorems
equitabilise 📖CompOp
5 mathmath: card_parts_equitabilise_subset_le, card_filter_equitabilise_big, card_filter_equitabilise_small, card_parts_equitabilise, equitabilise_isEquipartition

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq_of_mem_parts_equitabilise 📖Finset.card
Finset
Finset.instMembership
parts
Finset.instLattice
Finset.instOrderBot
equitabilise
equitabilise_aux
card_filter_equitabilise_big 📖mathematicalFinset.cardFinset
Finset.filter
parts
Finset.instLattice
Finset.instOrderBot
equitabilise
equitabilise_aux
card_filter_equitabilise_small 📖mathematicalFinset.cardFinset
Finset.filter
parts
Finset.instLattice
Finset.instOrderBot
equitabilise
mul_eq_mul_right_iff
IsCancelMulZero.toIsRightCancelMulZero
Nat.instIsCancelMulZero
AddRightCancelSemigroup.toIsRightCancelAdd
sum_card_parts
Finset.filter_or
Finset.filter_true_of_mem
card_eq_of_mem_parts_equitabilise
Finset.sum_union
Finset.disjoint_filter_filter'
Finset.sum_const_nat
Finset.mem_filter
card_filter_equitabilise_big
card_parts_equitabilise 📖mathematicalFinset.cardFinset
parts
Finset.instLattice
Finset.instOrderBot
equitabilise
Finset.filter_true_of_mem
card_eq_of_mem_parts_equitabilise
Finset.filter_or
Finset.card_union_of_disjoint
card_filter_equitabilise_small
card_filter_equitabilise_big
card_parts_equitabilise_subset_le 📖mathematicalFinset.card
Finset
Finset.instMembership
parts
Finset.instLattice
Finset.instOrderBot
Finset.instSDiff
Finset.biUnion
Finset.filter
Finset.instHasSubset
Finset.instDecidableRelSubset
equitabilise
equitabilise_aux
equitabilise_aux 📖mathematicalFinset.cardFinset
Finset.instSDiff
Finset.biUnion
Finset.filter
Finset.instHasSubset
Finset.instDecidableRelSubset
parts
Finset.instLattice
Finset.instOrderBot
Finset.singleton_injective
zero_add
Finset.card_singleton
Finset.filter.congr_simp
Finset.mem_map_of_mem
le
Finset.singleton_subset_iff
Finset.mem_singleton_self
Finset.filter_true_of_mem
Finset.card_map
MulZeroClass.mul_zero
mul_one
instIsEmptyFalse
Unique.eq_default
Finset.filter_empty
Finset.sdiff_empty
MulZeroClass.zero_mul
add_zero
tsub_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
one_mul
le_add_right
tsub_add_eq_add_tsub
CanonicallyOrderedAdd.toExistsAddOfLE
Nat.succ_pos'
le_rfl
le_add_left
add_tsub_assoc_of_le
Finset.exists_subset_card_eq
LE.le.trans_eq
Finset.card_pos
Finset.card_sdiff_of_subset
Finset.sdiff_ssubset
DistribLattice.instIsModularLattice
Finset.Nonempty.ne_empty
Finset.sdiff_disjoint
sdiff_sup_cancel
ite_eq_or_eq
LE.le.trans
Finset.card_le_card
Finset.sdiff_subset
Finset.filter_insert
Ne.ite_eq_right_iff
Finset.card_insert_of_notMem
le_sdiff_right
Finset.filter_subset
tsub_add_cancel_of_le
Mathlib.Tactic.Push.not_forall_eq
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.insert_erase
Finset.biUnion_insert
eq_or_ne
Finset.sdiff_eq_empty_iff_subset
Finset.subset_union_left
bot_le
mem_avoid
LE.le.antisymm
Finset.sdiff_subset_sdiff
Finset.Subset.rfl
Finset.biUnion_subset_biUnion_of_subset_left
Finset.filter_subset_filter
Finset.subset_insert
nonempty_of_mem_parts
Finset.mem_of_mem_erase
Disjoint.sdiff_eq_left
Finset.disjoint_of_subset_right
disjoint
Finset.ne_of_mem_erase
equitabilise_isEquipartition 📖mathematicalFinset.cardIsEquipartition
equitabilise
Set.equitableOn_iff_exists_eq_eq_add_one
card_eq_of_mem_parts_equitabilise
exists_equipartition_card_eq 📖mathematicalFinset.cardIsEquipartition
Finset
parts
Finset.instLattice
Finset.instOrderBot
tsub_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
mul_add
Distrib.leftDistribClass
add_assoc
tsub_add_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
LT.lt.le
pos_iff_ne_zero
mul_one
add_comm
Finset.Nonempty.ne_empty
Finset.card_pos
LT.lt.trans_le
equitabilise_isEquipartition
card_parts_equitabilise
LT.lt.ne'

---

← Back to Index