Documentation Verification Report

Increment

๐Ÿ“ Source: Mathlib/Combinatorics/SimpleGraph/Regularity/Increment.lean

Statistics

MetricCount
Definitionsincrement
1
Theoremscard_increment, energy_increment, increment_isEquipartition, le_sum_distinctPairs_edgeDensity_sq
4
Total5

SzemerediRegularity

Definitions

NameCategoryTheorems
increment ๐Ÿ“–CompOp
3 mathmath: energy_increment, card_increment, increment_isEquipartition

Theorems

NameKindAssumesProvesValidatesDepends On
card_increment ๐Ÿ“–mathematicalFinpartition.IsEquipartition
Finset.univ
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Finpartition.IsUniform
Real
Real.instField
Real.linearOrder
increment
stepBound
โ€”le_imp_le_of_le_of_le
le_refl
stepBound.eq_1
mul_le_mul_right
Nat.instMulLeftMono
pow_le_pow_left'
covariant_swap_mul_of_covariant_mul
stepBound_pos
Finset.Nonempty.card_pos
Finpartition.nonempty_of_not_uniform
increment.eq_1
Finpartition.card_bind
Real.instIsStrictOrderedRing
card_auxโ‚
card_auxโ‚‚
Finset.sum_congr
Finset.sum_dite
Finset.sum_const_nat
Finpartition.card_parts_equitabilise
LT.lt.ne'
Finset.univ_eq_attach
Finset.card_attach
a_add_one_le_four_pow_parts_card
LE.le.trans
add_mul
Distrib.rightDistribClass
Finset.card_filter_add_card_filter_not
energy_increment ๐Ÿ“–mathematicalFinpartition.IsEquipartition
Finset.univ
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Real
Real.instLE
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Monoid.toNatPow
Real.instMonoid
Nat.instMonoid
Fintype.card
Finpartition.IsUniform
Real.instField
Real.linearOrder
Real.instZero
Real.instOne
Real.instAdd
Real.instRatCast
Finpartition.energy
DivInvMonoid.toDiv
Real.instDivInvMonoid
increment
โ€”Nat.instAtLeastTwoHAddOfNat
Finpartition.coe_energy
Real.instIsStrictOrderedRing
add_div
mul_div_cancel_leftโ‚€
GroupWithZero.toMulDivCancelClass
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
lt_of_lt_of_le
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
add_le_add_right
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_one
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
mul_le_mul_of_nonneg_right
mul_div_right_comm
div_le_iffโ‚€
Real.instNontrivial
Finset.offDiag_card
tsub_mul
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
LE.total
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
covariant_swap_mul_of_covariant_mul
Nat.instMulLeftMono
le_tsub_of_add_le_left
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Int.instIsStrictOrderedRing
neg_neg_of_pos
Int.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Nat.cast_mul
Nat.cast_add
Nat.cast_pow
mul_nonneg_of_nonpos_of_nonpos
AddGroup.existsAddOfLE
covariant_swap_add_of_covariant_add
Int.instAddLeftMono
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
Mathlib.Tactic.Linarith.natCast_nonneg
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
le_of_lt
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
mul_nonneg
Nat.cast_nonneg'
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
sub_le_sub_right
mul_one
mul_tsub
not_le
Finpartition.IsUniform.eq_1
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
Even.pow_nonneg
even_two_mul
Finset.sum_add_distrib
Finset.sum_sub_distrib
Finset.sum_const
nsmul_eq_mul
Finset.sum_ite
Finset.sum_const_zero
zero_add
Finpartition.nonUniforms.eq_1
add_sub_assoc
add_sub_right_comm
Finset.sum_attach
Finset.sum_le_sum
le_sum_distinctPairs_edgeDensity_sq
card_increment
coe_stepBound
mul_pow
pow_right_comm
div_mul_eq_div_div_swap
Finset.sum_div
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Finset.sum_biUnion
Finset.sum_le_sum_of_subset_of_nonneg
sq_nonneg
increment_isEquipartition ๐Ÿ“–mathematicalFinpartition.IsEquipartition
Finset.univ
incrementโ€”Finpartition.mem_bind
increment.eq_1
Finset.mem_coe
card_eq_of_mem_parts_chunk
le_sum_distinctPairs_edgeDensity_sq ๐Ÿ“–mathematicalFinpartition.IsEquipartition
Finset.univ
Real
Real.instLE
Real.instOne
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Monoid.toNatPow
Nat.instMonoid
Fintype.card
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instMul
Real.instMonoid
Real.instAdd
Real.instRatCast
SimpleGraph.edgeDensity
Finset.instMembership
Finset.offDiag
Real.instSub
SimpleGraph.IsUniform
Real.instField
Real.linearOrder
SimpleGraph.IsUniform.instDecidableRel
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
Finset.sum
Real.instAddCommMonoid
โ€”Nat.instAtLeastTwoHAddOfNat
add_sub_assoc
add_sub_right_comm
add_zero
edgeDensity_chunk_uniform
edgeDensity_chunk_not_uniform
Finset.mem_offDiag

---

โ† Back to Index