Documentation Verification Report

Uniform

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Regularity/Uniform.lean

Statistics

MetricCount
DefinitionsIsUniform, nonUniforms, nonuniformWitnesses, sparsePairs, IsUniform, instDecidableRel, nonuniformWitness, nonuniformWitnesses, regularityReduced, instDecidableRel_adj
10
Theoremscard_biUnion_offDiag_le, card_biUnion_offDiag_le', card_interedges_sparsePairs_le, card_interedges_sparsePairs_le', sum_nonUniforms_lt, sum_nonUniforms_lt', mono, bot_isUniform, card_nonuniformWitnesses_le, isUniformOfEmpty, isUniform_one, mk_mem_nonUniforms, mk_mem_sparsePairs, nonUniforms_bot, nonUniforms_mono, nonempty_of_not_uniform, nonuniformWitness_mem_nonuniformWitnesses, sparsePairs_mono, mono, pos, isUniform_comm, isUniform_one, isUniform_singleton, le_card_nonuniformWitness, left_nonuniformWitnesses_card, left_nonuniformWitnesses_subset, nonuniformWitness_spec, nonuniformWitness_subset, nonuniformWitnesses_spec, not_isUniform_iff, not_isUniform_zero, regularityReduced_adj, regularityReduced_anti, regularityReduced_le, regularityReduced_mono, right_nonuniformWitnesses_card, right_nonuniformWitnesses_subset, unreduced_edges_subset
38
Total48

Finpartition

Definitions

NameCategoryTheorems
IsUniform πŸ“–MathDef
4 mathmath: isUniformOfEmpty, bot_isUniform, isUniform_one, szemeredi_regularity
nonUniforms πŸ“–CompOp
6 mathmath: nonUniforms_mono, mk_mem_nonUniforms, IsEquipartition.sum_nonUniforms_lt', SimpleGraph.unreduced_edges_subset, IsEquipartition.sum_nonUniforms_lt, nonUniforms_bot
nonuniformWitnesses πŸ“–CompOp
2 mathmath: card_nonuniformWitnesses_le, nonuniformWitness_mem_nonuniformWitnesses
sparsePairs πŸ“–CompOp
5 mathmath: IsEquipartition.card_interedges_sparsePairs_le, SimpleGraph.unreduced_edges_subset, sparsePairs_mono, mk_mem_sparsePairs, IsEquipartition.card_interedges_sparsePairs_le'

Theorems

NameKindAssumesProvesValidatesDepends On
bot_isUniform πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
IsUniform
Bot.bot
Finpartition
Finset
Finset.instLattice
Finset.instOrderBot
instBotFinset
β€”IsUniform.eq_1
card_bot
nonUniforms_bot
Finset.card_empty
Nat.cast_zero
mul_nonneg
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_nonneg
LT.lt.le
card_nonuniformWitnesses_le πŸ“–mathematicalβ€”Finset.card
Finset
nonuniformWitnesses
Finset.filter
SimpleGraph.IsUniform
Finset.decidableEq
SimpleGraph.IsUniform.instDecidableRel
parts
Finset.instLattice
Finset.instOrderBot
β€”Finset.card_image_le
isUniformOfEmpty πŸ“–mathematicalparts
Finset
Finset.instLattice
Finset.instOrderBot
Finset.instEmptyCollection
IsUniformβ€”Finset.filter.congr_simp
Finset.filter_empty
Nat.cast_zero
zero_tsub
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
MulZeroClass.mul_zero
MulZeroClass.zero_mul
isUniform_one πŸ“–mathematicalβ€”IsUniform
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”IsUniform.eq_1
mul_one
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
LE.le.trans
Finset.card_filter_le
Finset.offDiag_card
le_refl
mk_mem_nonUniforms πŸ“–mathematicalβ€”Finset
Finset.instMembership
nonUniforms
parts
Finset.instLattice
Finset.instOrderBot
SimpleGraph.IsUniform
β€”nonUniforms.eq_1
Finset.mem_filter
Finset.mem_offDiag
mk_mem_sparsePairs πŸ“–mathematicalβ€”Finset
Finset.instMembership
sparsePairs
parts
Finset.instLattice
Finset.instOrderBot
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
SimpleGraph.edgeDensity
β€”sparsePairs.eq_1
Finset.mem_filter
Finset.mem_offDiag
nonUniforms_bot πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
nonUniforms
Bot.bot
Finpartition
Finset
Finset.instLattice
Finset.instOrderBot
instBotFinset
Finset.instEmptyCollection
β€”Finset.eq_empty_iff_forall_notMem
Finset.singleton_injective
SimpleGraph.isUniform_singleton
nonUniforms_mono πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
Finset.instHasSubset
nonUniforms
β€”Finset.monotone_filter_right
SimpleGraph.IsUniform.mono
nonempty_of_not_uniform πŸ“–mathematicalIsUniformFinset.Nonempty
Finset
parts
Finset.instLattice
Finset.instOrderBot
β€”Finset.nonempty_of_ne_empty
isUniformOfEmpty
nonuniformWitness_mem_nonuniformWitnesses πŸ“–mathematicalSimpleGraph.IsUniform
Finset
Finset.instMembership
parts
Finset.instLattice
Finset.instOrderBot
nonuniformWitnesses
SimpleGraph.nonuniformWitness
β€”Finset.mem_image_of_mem
Finset.mem_filter
sparsePairs_mono πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Finset
Finset.instHasSubset
sparsePairs
β€”Finset.monotone_filter_right
LE.le.trans_lt'

Finpartition.IsEquipartition

Theorems

NameKindAssumesProvesValidatesDepends On
card_biUnion_offDiag_le πŸ“–mathematicalPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finpartition.IsEquipartition
Preorder.toLE
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.instAtLeastTwoHAddOfNat
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.biUnion
Finset.offDiag
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Nat.instAtLeastTwoHAddOfNat
Finset.eq_empty_or_nonempty
Unique.instSubsingleton
Nat.cast_zero
zero_pow
Nat.instCharZero
MulZeroClass.mul_zero
LE.le.trans
card_biUnion_offDiag_le'
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Nat.cast_pos
IsStrictOrderedRing.toIsOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Finset.Nonempty.card_pos
Finpartition.parts_nonempty
Finset.Nonempty.ne_empty
two_mul
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Nat.mono_cast
IsStrictOrderedRing.toZeroLEOneClass
Finpartition.card_parts_le_card
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
div_le_iffβ‚€'
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
div_pos
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
one_div_div
mul_left_comm
sq
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
mul_nonneg
zero_le_two
sq_nonneg
AddGroup.existsAddOfLE
card_biUnion_offDiag_le' πŸ“–mathematicalFinpartition.IsEquipartitionPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset.biUnion
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.offDiag
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Distrib.toAdd
β€”Finset.eq_empty_or_nonempty
Nat.cast_zero
add_zero
div_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_biUnion_le_card_mul
card_part_le_average_add_one
LE.le.trans
Finset.offDiag_card
one_mul
mul_assoc
mul_le_mul
IsOrderedRing.toPosMulMono
IsOrderedRing.toMulPosMono
Nat.cast_add
Nat.cast_one
covariant_swap_add_of_covariant_add
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.cast_div_le
le_of_lt
Nat.cast_pos'
NeZero.charZero_one
Right.add_pos_of_nonneg_of_pos
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_nonneg'
div_add_same
LT.lt.ne'
Finset.Nonempty.card_pos
mul_div_assoc
card_interedges_sparsePairs_le πŸ“–mathematicalFinpartition.IsEquipartition
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset.biUnion
Finset
Finpartition.sparsePairs
SimpleGraph.interedges
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Nat.instAtLeastTwoHAddOfNat
card_interedges_sparsePairs_le'
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
add_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
Nat.cast_nonneg'
IsStrictOrderedRing.toZeroLEOneClass
add_le_add_right
Nat.mono_cast
Finpartition.card_parts_le_card
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.one_pow
card_interedges_sparsePairs_le' πŸ“–mathematicalFinpartition.IsEquipartition
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset.biUnion
Finset
Finpartition.sparsePairs
SimpleGraph.interedges
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toAdd
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
β€”IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_biUnion_le
Finset.sum_le_sum
LT.lt.le
div_lt_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos
instNontrivialOfCharZero
Finset.Nonempty.card_pos
Finpartition.nonempty_of_mem_parts
Rat.cast_div
Rat.cast_natCast
Rat.cast_mul
Finset.sum_le_sum_of_subset_of_nonneg
Finset.filter_subset
mul_nonneg
IsOrderedRing.toPosMulMono
Nat.cast_nonneg'
Finset.mul_sum
Finset.sum_congr
mul_le_mul_of_nonneg_left
Nat.mono_cast
Finset.sum_le_card_nsmul
Nat.instIsOrderedAddMonoid
sq
card_part_le_average_add_one
smul_eq_mul
Finset.offDiag_card
mul_pow
mul_add_one
Distrib.leftDistribClass
pow_le_pow_leftβ‚€
Nat.instIsStrictOrderedRing
IsOrderedRing.toMulPosMono
add_nonneg
zero_le
Nat.instCanonicallyOrderedAdd
add_le_add_left
covariant_swap_add_of_covariant_add
sum_nonUniforms_lt πŸ“–mathematicalFinset.Nonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finpartition.IsEquipartition
Finpartition.IsUniform
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset.biUnion
Finset
Finpartition.nonUniforms
SProd.sprod
Finset.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
β€”Nat.instAtLeastTwoHAddOfNat
Finset.sum_congr
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_biUnion_le
sum_nonUniforms_lt'
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
pow_le_pow_leftβ‚€
IsOrderedRing.toMulPosMono
le_of_lt
add_pos_of_pos_of_nonneg
Nat.cast_pos'
NeZero.charZero_one
Finset.Nonempty.card_pos
Nat.cast_nonneg'
add_le_add_right
Nat.mono_cast
Finpartition.card_parts_le_card
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.isNat_pow
Mathlib.Meta.NormNum.IsNatPowT.run
Mathlib.Meta.NormNum.IsNatPowT.bit0
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.one_pow
sum_nonUniforms_lt' πŸ“–mathematicalFinset.Nonempty
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Finpartition.IsEquipartition
Finpartition.IsUniform
Finset.sum
Finset
NonUnitalNonAssocSemiring.toAddCommMonoid
Finpartition.nonUniforms
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
Distrib.toAdd
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
β€”Finset.sum_le_card_nsmul
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
sq
Nat.cast_mul
Nat.cast_le
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
card_part_le_average_add_one
nsmul_eq_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Nat.cast_pos'
NeZero.charZero_one
Right.add_pos_of_nonneg_of_pos
covariant_swap_add_of_covariant_add
Nat.instIsOrderedAddMonoid
zero_le
Nat.instCanonicallyOrderedAdd
Mathlib.Meta.Positivity.pos_of_isNat
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
mul_right_comm
mul_comm
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Finset.Nonempty.card_pos
Finpartition.parts_nonempty
Finset.Nonempty.ne_empty

Finpartition.IsUniform

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”Finpartition.IsUniform
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”LE.le.trans
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_le_card
Finpartition.nonUniforms_mono
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Nat.cast_nonneg'

SimpleGraph

Definitions

NameCategoryTheorems
IsUniform πŸ“–MathDef
10 mathmath: SzemerediRegularity.le_sum_distinctPairs_edgeDensity_sq, regularityReduced_adj, Finpartition.mk_mem_nonUniforms, isUniform_one, isUniform_singleton, Finpartition.card_nonuniformWitnesses_le, not_isUniform_iff, isUniform_comm, IsUniform.symm, not_isUniform_zero
nonuniformWitness πŸ“–CompOp
5 mathmath: SzemerediRegularity.biUnion_star_subset_nonuniformWitness, Finpartition.nonuniformWitness_mem_nonuniformWitnesses, le_card_nonuniformWitness, nonuniformWitness_spec, nonuniformWitness_subset
nonuniformWitnesses πŸ“–CompOp
5 mathmath: nonuniformWitnesses_spec, right_nonuniformWitnesses_subset, right_nonuniformWitnesses_card, left_nonuniformWitnesses_card, left_nonuniformWitnesses_subset
regularityReduced πŸ“–CompOp
6 mathmath: regularityReduced_adj, regularityReduced_mono, unreduced_edges_subset, regularityReduced_le, regularityReduced_anti, regularityReduced_edges_card_aux

Theorems

NameKindAssumesProvesValidatesDepends On
isUniform_comm πŸ“–mathematicalβ€”IsUniformβ€”IsUniform.symm
isUniform_one πŸ“–mathematicalβ€”IsUniform
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
β€”Finset.eq_of_subset_of_card_le
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
IsStrictOrderedRing.toCharZero
mul_one
sub_self
abs_zero
zero_lt_one
NeZero.charZero_one
isUniform_singleton πŸ“–mathematicalβ€”IsUniform
Finset
Finset.instSingleton
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”IsUniform.pos
Finset.subset_singleton_iff
Nat.cast_zero
LT.lt.not_ge
one_mul
Nat.cast_one
Finset.card_singleton
sub_self
abs_zero
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
le_card_nonuniformWitness πŸ“–mathematicalIsUniformPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
nonuniformWitness
β€”left_nonuniformWitnesses_card
right_nonuniformWitnesses_card
IsUniform.symm
left_nonuniformWitnesses_card πŸ“–mathematicalIsUniformPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset
nonuniformWitnesses
β€”nonuniformWitnesses.eq_1
not_isUniform_iff
left_nonuniformWitnesses_subset πŸ“–mathematicalIsUniformFinset
Finset.instHasSubset
nonuniformWitnesses
β€”nonuniformWitnesses.eq_1
not_isUniform_iff
nonuniformWitness_spec πŸ“–mathematicalIsUniformPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
abs
Rat.instLattice
Rat.addGroup
edgeDensity
nonuniformWitness
β€”trichotomous_of
IsWellOrder.toTrichotomous
WellOrderingRel.isWellOrder
asymm
instAsymmOfIsWellFounded
IsWellOrder.toIsWellFounded
nonuniformWitnesses_spec
edgeDensity_comm
IsUniform.symm
nonuniformWitness_subset πŸ“–mathematicalIsUniformFinset
Finset.instHasSubset
nonuniformWitness
β€”left_nonuniformWitnesses_subset
right_nonuniformWitnesses_subset
IsUniform.symm
nonuniformWitnesses_spec πŸ“–mathematicalIsUniformPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
abs
Rat.instLattice
Rat.addGroup
edgeDensity
Finset
nonuniformWitnesses
β€”nonuniformWitnesses.eq_1
not_isUniform_iff
not_isUniform_iff πŸ“–mathematicalβ€”IsUniform
Finset
Finset.instHasSubset
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
DivisionRing.toRatCast
abs
Rat.instLattice
Rat.addGroup
edgeDensity
β€”Rat.cast_abs
Rat.cast_sub
IsStrictOrderedRing.toCharZero
not_isUniform_zero πŸ“–mathematicalβ€”IsUniform
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”LE.le.not_gt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
Finset.empty_subset
MulZeroClass.mul_zero
Nat.cast_zero
regularityReduced_adj πŸ“–mathematicalβ€”Adj
regularityReduced
Finset
Finset.instMembership
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
IsUniform
Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DivisionRing.toRatCast
Field.toDivisionRing
edgeDensity
β€”β€”
regularityReduced_anti πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SimpleGraph
instLE
regularityReduced
β€”LE.le.trans
regularityReduced_le πŸ“–mathematicalβ€”SimpleGraph
instLE
regularityReduced
β€”β€”
regularityReduced_mono πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SimpleGraph
instLE
regularityReduced
β€”IsUniform.mono
right_nonuniformWitnesses_card πŸ“–mathematicalIsUniformPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Finset.card
Finset
nonuniformWitnesses
β€”nonuniformWitnesses.eq_1
not_isUniform_iff
right_nonuniformWitnesses_subset πŸ“–mathematicalIsUniformFinset
Finset.instHasSubset
nonuniformWitnesses
β€”nonuniformWitnesses.eq_1
not_isUniform_iff
unreduced_edges_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
Finset.filter
Adj
regularityReduced
DivInvMonoid.toDiv
DivisionRing.toDivInvMonoid
Field.toDivisionRing
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Nat.instAtLeastTwoHAddOfNat
regularityReduced.instDecidableRel_adj
SProd.sprod
Finset.instSProd
Finset.instUnion
Finset.biUnion
Finpartition.nonUniforms
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Finset.offDiag
Finpartition.sparsePairs
interedges
β€”Nat.instAtLeastTwoHAddOfNat
Finset.filter.congr_simp
Finpartition.mk_mem_nonUniforms
Finpartition.exists_mem
eq_or_ne
ne_of_adj

SimpleGraph.IsUniform

Definitions

NameCategoryTheorems
instDecidableRel πŸ“–CompOp
2 mathmath: SzemerediRegularity.le_sum_distinctPairs_edgeDensity_sq, Finpartition.card_nonuniformWitnesses_le

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”Preorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
SimpleGraph.IsUniform
β€”β€”LT.lt.trans_le
le_trans
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
IsStrictOrderedRing.toIsOrderedRing
Nat.cast_nonneg'
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toZeroLEOneClass
pos πŸ“–mathematicalSimpleGraph.IsUniformPreorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
β€”not_le
LE.le.not_gt
LE.le.trans
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
IsOrderedRing.toIsOrderedAddMonoid
IsStrictOrderedRing.toIsOrderedRing
covariant_swap_add_of_covariant_add
Finset.empty_subset
Nat.cast_zero
mul_nonpos_of_nonneg_of_nonpos
IsOrderedRing.toPosMulMono
Nat.cast_nonneg

SimpleGraph.regularityReduced

Definitions

NameCategoryTheorems
instDecidableRel_adj πŸ“–CompOp
2 mathmath: SimpleGraph.unreduced_edges_subset, SimpleGraph.regularityReduced_edges_card_aux

---

← Back to Index