Documentation Verification Report

Sum

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Sum.lean

Statistics

MetricCount
Definitionssum, sumEquiv, sumFin, sumLeft, sumRight, sumInl, sumInr, sumAssoc, sumComm, sum, Β«term_βŠ•g_Β»
11
Theoremsof_sum_left, of_sum_right, sum_max, sumLeft_sum, sumRight_sum, sum_sumLeft_sumRight, sum_sup_edge, sumInl_apply, sumInr_apply, sumAssoc_apply, sumAssoc_symm_apply, sumComm_apply, sumComm_symm_apply, sum_sup_edge, sum_sup_edge, chromaticNumber_le_sum_left, chromaticNumber_le_sum_right, chromaticNumber_sum, colorable_sum, sum_adj
20
Total31

SimpleGraph

Definitions

NameCategoryTheorems
sum πŸ“–CompOp
21 mathmath: sum_adj, Embedding.sumInr_apply, Iso.sumComm_apply, chromaticNumber_le_sum_right, Iso.sumBoxProdDistrib_apply, Embedding.sumInl_apply, chromaticNumber_sum, colorable_sum, Colorable.sum_max, Reachable.sum_sup_edge, Iso.boxProdSumDistrib_symm_apply, Iso.boxProdSumDistrib_apply, Iso.boxProdSumDistrib_toEquiv, chromaticNumber_le_sum_left, Iso.sumAssoc_apply, Preconnected.sum_sup_edge, Iso.sumBoxProdDistrib_symm_apply, Iso.sumAssoc_symm_apply, Iso.sumBoxProdDistrib_toEquiv, Iso.sumComm_symm_apply, Connected.sum_sup_edge
Β«term_βŠ•g_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
chromaticNumber_le_sum_left πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
sum
β€”chromaticNumber_le_of_forall_imp
Colorable.of_sum_left
chromaticNumber_le_sum_right πŸ“–mathematicalβ€”ENat
Preorder.toLE
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
instCompleteLinearOrderENat
chromaticNumber
sum
β€”chromaticNumber_le_of_forall_imp
Colorable.of_sum_right
chromaticNumber_sum πŸ“–mathematicalβ€”chromaticNumber
sum
ENat
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrderENat
β€”eq_max
chromaticNumber_le_sum_left
chromaticNumber_le_sum_right
chromaticNumber_le_iff_colorable
colorable_sum πŸ“–mathematicalβ€”Colorable
sum
β€”Colorable.of_sum_left
Colorable.of_sum_right
Colorable.sum_max
sum_adj πŸ“–mathematicalβ€”Adj
sum
β€”β€”

SimpleGraph.Colorable

Theorems

NameKindAssumesProvesValidatesDepends On
of_sum_left πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”β€”
of_sum_right πŸ“–mathematicalβ€”SimpleGraph.Colorableβ€”β€”
sum_max πŸ“–mathematicalβ€”SimpleGraph.Colorable
SimpleGraph.sum
β€”β€”

SimpleGraph.Coloring

Definitions

NameCategoryTheorems
sum πŸ“–CompOp
3 mathmath: sumRight_sum, sumLeft_sum, sum_sumLeft_sumRight
sumEquiv πŸ“–CompOpβ€”
sumFin πŸ“–CompOpβ€”
sumLeft πŸ“–CompOp
2 mathmath: sumLeft_sum, sum_sumLeft_sumRight
sumRight πŸ“–CompOp
2 mathmath: sumRight_sum, sum_sumLeft_sumRight

Theorems

NameKindAssumesProvesValidatesDepends On
sumLeft_sum πŸ“–mathematicalβ€”sumLeft
sum
β€”β€”
sumRight_sum πŸ“–mathematicalβ€”sumRight
sum
β€”β€”
sum_sumLeft_sumRight πŸ“–mathematicalβ€”sum
sumLeft
sumRight
β€”RelHom.ext

SimpleGraph.Connected

Theorems

NameKindAssumesProvesValidatesDepends On
sum_sup_edge πŸ“–mathematicalSimpleGraph.ConnectedSimpleGraph
SimpleGraph.instMax
SimpleGraph.sum
SimpleGraph.edge
β€”SimpleGraph.Preconnected.sum_sup_edge
preconnected

SimpleGraph.Embedding

Definitions

NameCategoryTheorems
sumInl πŸ“–CompOp
1 mathmath: sumInl_apply
sumInr πŸ“–CompOp
1 mathmath: sumInr_apply

Theorems

NameKindAssumesProvesValidatesDepends On
sumInl_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
SimpleGraph.Adj
SimpleGraph.sum
RelEmbedding.instFunLike
sumInl
β€”β€”
sumInr_apply πŸ“–mathematicalβ€”DFunLike.coe
RelEmbedding
SimpleGraph.Adj
SimpleGraph.sum
RelEmbedding.instFunLike
sumInr
β€”β€”

SimpleGraph.Iso

Definitions

NameCategoryTheorems
sumAssoc πŸ“–CompOp
2 mathmath: sumAssoc_apply, sumAssoc_symm_apply
sumComm πŸ“–CompOp
2 mathmath: sumComm_apply, sumComm_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
sumAssoc_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
RelIso.instFunLike
sumAssoc
β€”β€”
sumAssoc_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
RelIso.instFunLike
RelIso.symm
sumAssoc
β€”β€”
sumComm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
RelIso.instFunLike
sumComm
β€”β€”
sumComm_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
RelIso
SimpleGraph.Adj
SimpleGraph.sum
RelIso.instFunLike
RelIso.symm
sumComm
β€”β€”

SimpleGraph.Preconnected

Theorems

NameKindAssumesProvesValidatesDepends On
sum_sup_edge πŸ“–mathematicalSimpleGraph.PreconnectedSimpleGraph
SimpleGraph.instMax
SimpleGraph.sum
SimpleGraph.edge
β€”SimpleGraph.Reachable.mono
le_sup_left
SimpleGraph.Reachable.map
SimpleGraph.Reachable.sum_sup_edge
SimpleGraph.Reachable.symm

SimpleGraph.Reachable

Theorems

NameKindAssumesProvesValidatesDepends On
sum_sup_edge πŸ“–mathematicalβ€”SimpleGraph.Reachable
SimpleGraph
SimpleGraph.instMax
SimpleGraph.sum
SimpleGraph.edge
β€”trans
mono
le_sup_left
map
symm
SimpleGraph.Adj.reachable
SimpleGraph.sum_adj

---

← Back to Index