Documentation Verification Report

Counting

📁 Source: Mathlib/Combinatorics/SimpleGraph/Triangle/Counting.lean

Statistics

MetricCount
Definitions0
Theoremstriangle_counting, triangle_counting'
2
Total2

SimpleGraph

Theorems

NameKindAssumesProvesValidatesDepends On
triangle_counting 📖mathematicalReal
Real.instLE
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instRatCast
edgeDensity
IsUniform
Real.instField
Real.linearOrder
Disjoint
Finset
Finset.partialOrder
Finset.instOrderBot
Real.instSub
Real.instOne
Monoid.toNatPow
Real.instMonoid
Finset.card
cliqueFinset
Nat.instAtLeastTwoHAddOfNat
LE.le.trans
triangle_counting'
Nat.cast_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Finset.card_le_card_of_injOn
Finset.coe_filter
coe_cliqueFinset
triangle_counting' 📖mathematicalReal
Real.instLE
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instRatCast
edgeDensity
IsUniform
Real.instField
Real.linearOrder
Real.instSub
Real.instOne
Monoid.toNatPow
Real.instMonoid
Finset.card
Finset.filter
Adj
SProd.sprod
Finset
Finset.instSProd
Nat.instAtLeastTwoHAddOfNat
le_trans
Finset.card_biUnion
Function.onFun.eq_1
Finset.disjoint_left
Nat.cast_sum
nsmul_eq_mul
LT.lt.le
IsUniform.pos
Real.instIsStrictOrderedRing
Finset.union_subset
Finset.filter_subset
sub_mul
one_mul
Finset.card_sdiff_of_subset
Nat.cast_sub
Finset.card_le_card
sub_le_sub_iff_left
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_assoc
mul_comm
two_mul
LE.le.trans
Nat.cast_le
Real.instZeroLEOneClass
IsStrictOrderedRing.toCharZero
Finset.card_union_le
Nat.cast_add
add_le_add
Eq.trans_le
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.mul_pow
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.one_pow
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pp_pf_overlap
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Tactic.Ring.add_pf_add_gt
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
mul_nonneg
IsOrderedRing.toPosMulMono
pow_nonneg
IsOrderedRing.toZeroLEOneClass
Nat.cast_nonneg'
Finset.card_nsmul_le_sum

---

← Back to Index