Documentation Verification Report

Removal

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Triangle/Removal.lean

Statistics

MetricCount
DefinitionsevalTriangleRemovalBound, triangleRemovalBound
2
Theoremsle_card_cliqueFinset, regularityReduced_edges_card_aux, triangleRemovalBound_le, triangleRemovalBound_mul_cube_lt, triangleRemovalBound_nonpos, triangleRemovalBound_pos, triangle_removal
7
Total9

Mathlib.Meta.Positivity

Definitions

NameCategoryTheorems
evalTriangleRemovalBound πŸ“–CompOpβ€”

SimpleGraph

Definitions

NameCategoryTheorems
triangleRemovalBound πŸ“–CompOp
5 mathmath: triangleRemovalBound_mul_cube_lt, triangleRemovalBound_pos, triangleRemovalBound_le, FarFromTriangleFree.le_card_cliqueFinset, triangleRemovalBound_nonpos

Theorems

NameKindAssumesProvesValidatesDepends On
regularityReduced_edges_card_aux πŸ“–mathematicalReal
Real.instLT
Real.instZero
Finpartition.IsEquipartition
Finset.univ
Finpartition.IsUniform
Real.instField
Real.linearOrder
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instLE
Finset.card
Finset
Finpartition.parts
Finset.instLattice
Finset.instOrderBot
Real.instMul
Real.instSub
Sym2
edgeFinset
fintypeEdgeSet
Sym2.instFintype
regularityReduced
regularityReduced.instDecidableRel_adj
Monoid.toNatPow
Nat.instMonoid
Fintype.card
β€”Nat.instAtLeastTwoHAddOfNat
Finset.univ_product_univ
mul_sub
Finset.filter_and_not
Finset.cast_card_sdiff
Finset.monotone_filter_right
regularityReduced_le
RCLike.charZero_rclike
two_mul_card_edgeFinset
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Finset.card_le_card
unreduced_edges_subset
Finset.card_union_le
add_le_add_left
covariant_swap_add_of_covariant_add
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
Finpartition.IsEquipartition.sum_nonUniforms_lt
Real.instIsStrictOrderedRing
Finset.univ_nonempty
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
add_le_add
add_le_add_right
Finpartition.IsEquipartition.card_biUnion_offDiag_le
Finpartition.IsEquipartition.card_interedges_sparsePairs_le
le_of_lt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Meta.NormNum.isNat_add
triangleRemovalBound_le πŸ“–mathematicalReal
Real.instLE
Real.instOne
triangleRemovalBound
Real.instMul
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Monoid.toNatPow
Real.instMonoid
SzemerediRegularity.bound
Nat.ceil
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
β€”Nat.instAtLeastTwoHAddOfNat
Real.instIsStrictOrderedRing
mul_inv_rev
inf_of_le_right
triangleRemovalBound_mul_cube_lt πŸ“–mathematicalReal
Real.instLT
Real.instZero
Real.instMul
triangleRemovalBound
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Nat.ceil
Real.semiring
Real.partialOrder
FloorRing.toFloorSemiring
Real.instRing
Real.linearOrder
Real.instIsStrictOrderedRing
Real.instFloorRing
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
Real.instOne
β€”Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
min_le_left
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Mathlib.Meta.Positivity.nat_ceil_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
mul_inv
inv_mul_cancel_rightβ‚€
ne_of_gt
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_one
triangleRemovalBound_nonpos πŸ“–mathematicalReal
Real.instLE
Real.instZero
triangleRemovalBoundβ€”Real.instIsStrictOrderedRing
triangleRemovalBound.eq_1
Nat.ceil_eq_zero
div_nonpos_of_nonneg_of_nonpos
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
inv_zero
triangleRemovalBound_pos πŸ“–mathematicalReal
Real.instLT
Real.instZero
triangleRemovalBoundβ€”Nat.instAtLeastTwoHAddOfNat
min_le_left
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.neg_congr
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.mul_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_nonpos
lt_min
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_pos
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
NeZero.charZero_one
Mathlib.Meta.Positivity.nat_ceil_pos
div_pos
SzemerediRegularity.bound_pos
triangle_removal πŸ“–mathematicalReal
Real.instLT
Real.instNatCast
Finset.card
Finset
cliqueFinset
Real.instMul
triangleRemovalBound
Monoid.toNatPow
Real.instMonoid
Fintype.card
SimpleGraph
instLE
Real.instSub
Sym2
edgeFinset
fintypeEdgeSet
Sym2.instFintype
Nat.instMonoid
CliqueFree
β€”LT.lt.not_ge
FarFromTriangleFree.le_card_cliqueFinset
farFromTriangleFree_iff
le_of_not_gt
Mathlib.Tactic.Push.not_and_eq

SimpleGraph.FarFromTriangleFree

Theorems

NameKindAssumesProvesValidatesDepends On
le_card_cliqueFinset πŸ“–mathematicalSimpleGraph.FarFromTriangleFree
Real
Real.instField
Real.linearOrder
Real.instLE
Real.instMul
SimpleGraph.triangleRemovalBound
Monoid.toNatPow
Real.instMonoid
Real.instNatCast
Fintype.card
Finset.card
Finset
SimpleGraph.cliqueFinset
β€”isEmpty_or_nonempty
Fintype.card_eq_zero
CharP.cast_eq_zero
CharP.ofCharZero
RCLike.charZero_rclike
zero_pow
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
Real.instIsOrderedRing
le_or_gt
LE.le.trans
mul_nonpos_of_nonpos_of_nonneg
IsOrderedRing.toMulPosMono
SimpleGraph.triangleRemovalBound_nonpos
le_of_lt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toZeroLEOneClass
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
Fintype.card_pos
Nat.cast_nonneg'
Nat.le_ceil
le_total
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
pow_le_pow_leftβ‚€
Nat.mono_cast
LT.lt.le
SimpleGraph.triangleRemovalBound_pos
SimpleGraph.triangleRemovalBound_mul_cube_lt
LT.lt.ne'
Finset.Nonempty.card_pos
cliqueFinset_nonempty
szemeredi_regularity
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_le
SimpleGraph.regularityReduced_edges_card_aux
lt_of_mul_lt_mul_left
mul_assoc
zero_le_two
cliqueFinset_nonempty'
SimpleGraph.regularityReduced_le
lt_one

---

← Back to Index