Documentation Verification Report

Tripartite

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Triangle/Tripartite.lean

Statistics

MetricCount
DefinitionsExplicitDisjoint, NoAccidental, graph, instDecidableRelAdj, toTriangle
5
Theoremsinjβ‚€, inj₁, injβ‚‚, in₀₁_iff, in₀₁_iff', inβ‚€β‚‚_iff, inβ‚€β‚‚_iff', in₁₀_iff, in₁₀_iff', in₁₂_iff, in₁₂_iff', inβ‚‚β‚€_iff, inβ‚‚β‚€_iff', in₂₁_iff, in₂₁_iff', not_inβ‚€β‚€, not_in₁₁, not_inβ‚‚β‚‚, eq_or_eq_or_eq, card_triangles, cliqueFinset_eq_image, cliqueFinset_eq_map, cliqueSet_eq_image, exists_mem_toTriangle, farFromTriangleFree, graph_triple, is3Clique_iff, locallyLinear, map_toTriangle_disjoint, rel_iff, rel_irrefl, rel_symm, toTriangle_apply, toTriangle_is3Clique, toTriangle_surjOn
35
Total40

SimpleGraph.TripartiteFromTriangles

Definitions

NameCategoryTheorems
ExplicitDisjoint πŸ“–CompDataβ€”
NoAccidental πŸ“–CompDataβ€”
graph πŸ“–CompOp
24 mathmath: Graph.inβ‚€β‚‚_iff', toTriangle_surjOn, Graph.in₀₁_iff', cliqueFinset_eq_map, Graph.in₂₁_iff', Graph.in₁₀_iff, is3Clique_iff, Graph.inβ‚€β‚‚_iff, locallyLinear, cliqueSet_eq_image, cliqueFinset_eq_image, toTriangle_is3Clique, Graph.in₁₂_iff', Graph.inβ‚‚β‚€_iff', Graph.not_inβ‚‚β‚‚, Graph.in₀₁_iff, card_triangles, Graph.inβ‚‚β‚€_iff, Graph.in₁₀_iff', Graph.in₁₂_iff, farFromTriangleFree, Graph.not_inβ‚€β‚€, Graph.not_in₁₁, Graph.in₂₁_iff
toTriangle πŸ“–CompOp
9 mathmath: toTriangle_surjOn, cliqueFinset_eq_map, is3Clique_iff, cliqueSet_eq_image, cliqueFinset_eq_image, toTriangle_is3Clique, exists_mem_toTriangle, toTriangle_apply, map_toTriangle_disjoint

Theorems

NameKindAssumesProvesValidatesDepends On
card_triangles πŸ“–mathematicalβ€”Finset.card
Finset
SimpleGraph.cliqueFinset
graph
instFintypeSum
graph.instDecidableRelAdj
β€”cliqueFinset_eq_map
Finset.card_map
cliqueFinset_eq_image πŸ“–mathematicalβ€”SimpleGraph.cliqueFinset
graph
instFintypeSum
graph.instDecidableRelAdj
Finset.image
Finset
Finset.decidableEq
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
β€”Finset.coe_injective
SimpleGraph.coe_cliqueFinset
Finset.coe_image
cliqueSet_eq_image
cliqueFinset_eq_map πŸ“–mathematicalβ€”SimpleGraph.cliqueFinset
graph
instFintypeSum
graph.instDecidableRelAdj
Finset.map
Finset
toTriangle
β€”cliqueFinset_eq_image
Finset.map_eq_image
cliqueSet_eq_image πŸ“–mathematicalβ€”SimpleGraph.cliqueSet
graph
Set.image
Finset
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
SetLike.coe
Finset.instSetLike
β€”Set.ext
is3Clique_iff
exists_mem_toTriangle πŸ“–mathematicalSimpleGraph.Adj
graph
Finset
Finset.instMembership
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
β€”β€”
farFromTriangleFree πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
Monoid.toNatPow
Nat.instMonoid
Fintype.card
Finset.card
SimpleGraph.FarFromTriangleFree
graph
instFintypeSum
graph.instDecidableRelAdj
β€”SimpleGraph.farFromTriangleFree_of_disjoint_triangles
Function.Injective.injOn
Function.Embedding.injective
Finset.map_subset_iff_subset_preimage
toTriangle_is3Clique
map_toTriangle_disjoint
Fintype.card_sum
Nat.cast_pow
Nat.cast_add
Finset.card_map
add_assoc
graph_triple πŸ“–mathematicalSimpleGraph.Adj
graph
Finset
Finset.instInsert
Sum3.inβ‚€
Sum3.in₁
Finset.instSingleton
Sum3.inβ‚‚
β€”Finset.ext
is3Clique_iff πŸ“–mathematicalβ€”SimpleGraph.IsNClique
graph
Finset
Finset.instMembership
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
β€”SimpleGraph.is3Clique_iff
graph_triple
Graph.in₀₁_iff
Graph.inβ‚€β‚‚_iff
Graph.in₁₂_iff
NoAccidental.eq_or_eq_or_eq
toTriangle_is3Clique
locallyLinear πŸ“–mathematicalβ€”SimpleGraph.LocallyLinear
graph
β€”cliqueSet_eq_image
Finset.coe_map
map_toTriangle_disjoint
exists_mem_toTriangle
toTriangle_is3Clique
map_toTriangle_disjoint πŸ“–mathematicalβ€”Set.Pairwise
Finset
SetLike.coe
Finset.instSetLike
Finset.map
toTriangle
Set.Subsingleton
Set
Set.instInter
β€”Finset.coe_map
ExplicitDisjoint.injβ‚‚
ExplicitDisjoint.inj₁
ExplicitDisjoint.injβ‚€
rel_iff πŸ“–mathematicalβ€”Rel
Finset
Finset.instMembership
Sum3.inβ‚€
Sum3.in₁
Sum3.inβ‚‚
β€”β€”
rel_irrefl πŸ“–mathematicalβ€”Relβ€”β€”
rel_symm πŸ“–mathematicalβ€”Symmetric
Rel
β€”β€”
toTriangle_apply πŸ“–mathematicalβ€”DFunLike.coe
Function.Embedding
Finset
Function.instFunLikeEmbedding
toTriangle
Finset.instInsert
Sum3.inβ‚€
Sum3.in₁
Finset.instSingleton
Sum3.inβ‚‚
β€”β€”
toTriangle_is3Clique πŸ“–mathematicalFinset
Finset.instMembership
SimpleGraph.IsNClique
graph
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
β€”β€”
toTriangle_surjOn πŸ“–mathematicalβ€”Set.SurjOn
Finset
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
toTriangle
SetLike.coe
Finset.instSetLike
SimpleGraph.cliqueSet
graph
β€”is3Clique_iff

SimpleGraph.TripartiteFromTriangles.ExplicitDisjoint

Theorems

NameKindAssumesProvesValidatesDepends On
injβ‚€ πŸ“–β€”Finset
Finset.instMembership
β€”β€”β€”
inj₁ πŸ“–β€”Finset
Finset.instMembership
β€”β€”β€”
injβ‚‚ πŸ“–β€”Finset
Finset.instMembership
β€”β€”β€”

SimpleGraph.TripartiteFromTriangles.Graph

Theorems

NameKindAssumesProvesValidatesDepends On
in₀₁_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚€
Sum3.in₁
Finset
Finset.instMembership
β€”β€”
in₀₁_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚€
Sum3.in₁
Finset
Finset.instMembership
β€”β€”
inβ‚€β‚‚_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚€
Sum3.inβ‚‚
Finset
Finset.instMembership
β€”β€”
inβ‚€β‚‚_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚€
Sum3.inβ‚‚
Finset
Finset.instMembership
β€”β€”
in₁₀_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.in₁
Sum3.inβ‚€
Finset
Finset.instMembership
β€”β€”
in₁₀_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.in₁
Sum3.inβ‚€
Finset
Finset.instMembership
β€”β€”
in₁₂_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.in₁
Sum3.inβ‚‚
Finset
Finset.instMembership
β€”β€”
in₁₂_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.in₁
Sum3.inβ‚‚
Finset
Finset.instMembership
β€”β€”
inβ‚‚β‚€_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚‚
Sum3.inβ‚€
Finset
Finset.instMembership
β€”β€”
inβ‚‚β‚€_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚‚
Sum3.inβ‚€
Finset
Finset.instMembership
β€”β€”
in₂₁_iff πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚‚
Sum3.in₁
Finset
Finset.instMembership
β€”β€”
in₂₁_iff' πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚‚
Sum3.in₁
Finset
Finset.instMembership
β€”β€”
not_inβ‚€β‚€ πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚€
β€”β€”
not_in₁₁ πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.in₁
β€”β€”
not_inβ‚‚β‚‚ πŸ“–mathematicalβ€”SimpleGraph.Adj
SimpleGraph.TripartiteFromTriangles.graph
Sum3.inβ‚‚
β€”β€”

SimpleGraph.TripartiteFromTriangles.NoAccidental

Theorems

NameKindAssumesProvesValidatesDepends On
eq_or_eq_or_eq πŸ“–β€”Finset
Finset.instMembership
β€”β€”β€”

SimpleGraph.TripartiteFromTriangles.graph

Definitions

NameCategoryTheorems
instDecidableRelAdj πŸ“–CompOp
4 mathmath: SimpleGraph.TripartiteFromTriangles.cliqueFinset_eq_map, SimpleGraph.TripartiteFromTriangles.cliqueFinset_eq_image, SimpleGraph.TripartiteFromTriangles.card_triangles, SimpleGraph.TripartiteFromTriangles.farFromTriangleFree

---

← Back to Index