Documentation Verification Report

Tutte

πŸ“ Source: Mathlib/Combinatorics/SimpleGraph/Tutte.lean

Statistics

MetricCount
DefinitionsIsTutteViolator
1
Theoremsempty, mono, exists_of_isClique_supp, exists_isTutteViolator, not_isTutteViolator_of_isPerfectMatching, tutte
6
Total7

SimpleGraph

Definitions

NameCategoryTheorems
IsTutteViolator πŸ“–MathDef
4 mathmath: exists_isTutteViolator, not_isTutteViolator_of_isPerfectMatching, tutte, IsTutteViolator.empty

Theorems

NameKindAssumesProvesValidatesDepends On
exists_isTutteViolator πŸ“–mathematicalSubgraph.IsPerfectMatching
Even
Nat.card
IsTutteViolatorβ€”nonempty_fintype
exists_maximal_isMatchingFree
IsTutteViolator.mono
Subgraph.IsPerfectMatching.exists_of_isClique_supp
Fintype.card_eq_nat_card
Set.ncard_eq_toFinset_card'
Set.toFinset_card
Mathlib.Tactic.Push.not_forall_eq
not_isClique_iff
Reachable.exists_path_of_dist
Connected.preconnected
ConnectedComponent.connected_toSimpleGraph
Walk.exists_adj_adj_not_adj_ne
Reachable.one_lt_dist_of_ne_of_not_adj
Walk.reachable
Adj.symm
left_lt_sup
edge_le_iff
Subtype.val_injective
adj_comm
deleteUniversalVerts_adj
not_isTutteViolator_of_isPerfectMatching πŸ“–mathematicalSubgraph.IsPerfectMatchingIsTutteViolatorβ€”Subtype.val_injective
Subgraph.IsMatching.eq_of_adj_right
ConnectedComponent.eq_of_common_vertex
Nat.card_le_card_of_injective
Subtype.finite
ConnectedComponent.odd_matches_node_outside
tutte πŸ“–mathematicalβ€”Subgraph.IsPerfectMatching
IsTutteViolator
β€”not_isTutteViolator_of_isPerfectMatching
Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
IsTutteViolator.empty
exists_isTutteViolator
Nat.not_odd_iff_even

SimpleGraph.IsTutteViolator

Theorems

NameKindAssumesProvesValidatesDepends On
empty πŸ“–mathematicalOdd
Nat.instSemiring
Nat.card
SimpleGraph.IsTutteViolator
Set
Set.instEmptyCollection
β€”eq_1
Set.ncard_empty
Odd.pos
Nat.instCanonicallyOrderedAdd
Nat.instNontrivial
SimpleGraph.odd_ncard_oddComponents
Subtype.finite
SimpleGraph.Subgraph.deleteVerts_empty
Set.ncard_univ
mono πŸ“–β€”SimpleGraph
SimpleGraph.instLE
SimpleGraph.IsTutteViolator
β€”β€”SimpleGraph.ncard_oddComponents_mono
Subtype.finite
SimpleGraph.Subgraph.deleteVerts_mono'

SimpleGraph.Subgraph.IsPerfectMatching

Theorems

NameKindAssumesProvesValidatesDepends On
exists_of_isClique_supp πŸ“–mathematicalEven
Nat.card
SimpleGraph.IsTutteViolator
SimpleGraph.universalVerts
SimpleGraph.IsClique
Set.Elem
SimpleGraph.Subgraph.verts
SimpleGraph.deleteUniversalVerts
SimpleGraph.Subgraph.coe
SimpleGraph.ConnectedComponent.supp
SimpleGraph.Subgraph.IsPerfectMatchingβ€”nonempty_fintype
SimpleGraph.IsClique.even_iff_exists_isMatching
SimpleGraph.IsClique.subset
SimpleGraph.isClique_universalVerts
Set.toFinite
Subtype.finite
Set.even_ncard_compl_iff
SimpleGraph.Subgraph.IsMatching.even_card
SimpleGraph.Subgraph.IsMatching.sup
SimpleGraph.Subgraph.IsMatching.support_eq_verts
SimpleGraph.Subgraph.isSpanning_iff
SimpleGraph.Subgraph.verts_sup
Set.union_compl_self

---

← Back to Index