Documentation Verification Report

Ackermann

๐Ÿ“ Source: Mathlib/Computability/Ackermann.lean

Statistics

MetricCount
DefinitionspappAck, step, ack
3
Theoremseval_pappAck, eval_pappAck_step_succ, eval_pappAck_step_zero, primrec_pappAck, primrec_pappAck_step, ack_ack_lt_ack_max_add_two, ack_add_one_sq_lt_ack_add_four, ack_add_one_sq_lt_ack_add_three, ack_inj_left, ack_inj_right, ack_injective_left, ack_injective_right, ack_le_ack, ack_le_iff_left, ack_le_iff_right, ack_lt_iff_left, ack_lt_iff_right, ack_mono_left, ack_mono_right, ack_one, ack_pair_lt, ack_pos, ack_strictMono_left, ack_strictMono_right, ack_succ_right_le_ack_succ_left, ack_succ_succ, ack_succ_zero, ack_three, ack_two, ack_zero, add_add_one_le_ack, add_lt_ack, computableโ‚‚_ack, exists_lt_ack_of_nat_primrec, lt_ack_left, lt_ack_right, max_ack_left, max_ack_right, not_nat_primrec_ack_self, not_primrec_ack_self, not_primrecโ‚‚_ack, one_lt_ack_succ_left, one_lt_ack_succ_right
43
Total46

Nat.Partrec.Code

Definitions

NameCategoryTheorems
pappAck ๐Ÿ“–CompOp
2 mathmath: primrec_pappAck, eval_pappAck

Theorems

NameKindAssumesProvesValidatesDepends On
eval_pappAck ๐Ÿ“–mathematicalโ€”eval
pappAck
Part.some
ack
โ€”ack.induct
ack_zero
eval_pappAck_step_zero
ack_succ_zero
eval_pappAck_step_succ
Part.bind_some
ack_succ_succ
eval_pappAck_step_succ ๐Ÿ“–mathematicalโ€”eval
pappAck.step
Part.bind
โ€”eval_curry
Nat.unpair_pair
eval_const
Part.bind_some
eval_pappAck_step_zero ๐Ÿ“–mathematicalโ€”eval
pappAck.step
โ€”eval_curry
Nat.unpair_pair
eval_const
Part.bind_some
primrec_pappAck ๐Ÿ“–mathematicalโ€”Encodable.encode
Nat.Partrec.Code
Option.encodable
Primcodable.toEncodable
Primcodable.ofDenumerable
instDenumerable
pappAck
Encodable.decode
Denumerable.nat
โ€”Primrec.nat_recโ‚
Primrec.comp
primrec_pappAck_step
Primrec.snd
primrec_pappAck_step ๐Ÿ“–mathematicalโ€”Encodable.encode
Nat.Partrec.Code
Option.encodable
Primcodable.toEncodable
Primcodable.ofDenumerable
instDenumerable
pappAck.step
Encodable.decode
โ€”Primrecโ‚‚.comp
primrecโ‚‚_curry
primrecโ‚‚_comp
Primrec.id
Nat.Primrec.const

Nat.Partrec.Code.pappAck

Definitions

NameCategoryTheorems
step ๐Ÿ“–CompOp
3 mathmath: Nat.Partrec.Code.primrec_pappAck_step, Nat.Partrec.Code.eval_pappAck_step_zero, Nat.Partrec.Code.eval_pappAck_step_succ

(root)

Definitions

NameCategoryTheorems
ack ๐Ÿ“–CompOp
39 mathmath: ack_add_one_sq_lt_ack_add_three, not_nat_primrec_ack_self, one_lt_ack_succ_left, ack_strictMono_left, ack_inj_right, ack_injective_right, not_primrec_ack_self, not_primrecโ‚‚_ack, ack_succ_zero, ack_pos, lt_ack_right, ack_le_iff_left, ack_three, ack_succ_succ, max_ack_right, ack_le_iff_right, ack_mono_right, ack_succ_right_le_ack_succ_left, one_lt_ack_succ_right, add_add_one_le_ack, ack_pair_lt, lt_ack_left, add_lt_ack, ack_add_one_sq_lt_ack_add_four, ack_injective_left, ack_one, ack_strictMono_right, max_ack_left, ack_two, ack_ack_lt_ack_max_add_two, ack_inj_left, ack_lt_iff_left, ack_zero, ack_lt_iff_right, ack_le_ack, computableโ‚‚_ack, exists_lt_ack_of_nat_primrec, ack_mono_left, Nat.Partrec.Code.eval_pappAck

Theorems

NameKindAssumesProvesValidatesDepends On
ack_ack_lt_ack_max_add_two ๐Ÿ“–mathematicalโ€”ackโ€”ack_mono_left
le_max_left
ack_strictMono_right
ack_strictMono_left
le_max_right
ack_succ_succ
ack_succ_right_le_ack_succ_left
ack_add_one_sq_lt_ack_add_four ๐Ÿ“–mathematicalโ€”ack
Monoid.toNatPow
Nat.instMonoid
โ€”ack_strictMono_right
lt_ack_right
two_ne_zero
ack_mono_right
ack_add_one_sq_lt_ack_add_three
ack_mono_left
ack_succ_succ
ack_succ_right_le_ack_succ_left
ack_add_one_sq_lt_ack_add_three ๐Ÿ“–mathematicalโ€”Monoid.toNatPow
Nat.instMonoid
ack
โ€”ack_zero
zero_add
ack_three
ack_succ_zero
ack_succ_succ
LE.le.trans
ack_mono_right
ack_mono_left
ack_inj_left ๐Ÿ“–mathematicalโ€”ackโ€”ack_injective_left
ack_inj_right ๐Ÿ“–mathematicalโ€”ackโ€”ack_injective_right
ack_injective_left ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.injective
ack_strictMono_left
ack_injective_right ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.injective
ack_strictMono_right
ack_le_ack ๐Ÿ“–mathematicalโ€”ackโ€”LE.le.trans
ack_mono_left
ack_mono_right
ack_le_iff_left ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.le_iff_le
ack_strictMono_left
ack_le_iff_right ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.le_iff_le
ack_strictMono_right
ack_lt_iff_left ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.lt_iff_lt
ack_strictMono_left
ack_lt_iff_right ๐Ÿ“–mathematicalโ€”ackโ€”StrictMono.lt_iff_lt
ack_strictMono_right
ack_mono_left ๐Ÿ“–mathematicalโ€”Monotone
Nat.instPreorder
ack
โ€”StrictMono.monotone
ack_strictMono_left
ack_mono_right ๐Ÿ“–mathematicalโ€”Monotone
Nat.instPreorder
ack
โ€”StrictMono.monotone
ack_strictMono_right
ack_one ๐Ÿ“–mathematicalโ€”ackโ€”ack_succ_zero
ack_zero
zero_add
ack_succ_succ
ack_pair_lt ๐Ÿ“–mathematicalโ€”ack
Nat.pair
โ€”LT.lt.trans
ack_strictMono_right
Nat.pair_lt_max_add_one_sq
ack_add_one_sq_lt_ack_add_four
ack_pos ๐Ÿ“–mathematicalโ€”ackโ€”ack_zero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
ack_succ_zero
ack_succ_succ
ack_strictMono_left ๐Ÿ“–mathematicalโ€”StrictMono
Nat.instPreorder
ack
โ€”โ€”
ack_strictMono_right ๐Ÿ“–mathematicalโ€”StrictMono
Nat.instPreorder
ack
โ€”โ€”
ack_succ_right_le_ack_succ_left ๐Ÿ“–mathematicalโ€”ackโ€”zero_add
ack_succ_zero
ack_succ_succ
ack_mono_right
le_trans
add_add_one_le_ack
ack_succ_succ ๐Ÿ“–mathematicalโ€”ackโ€”ack.eq_3
ack_succ_zero ๐Ÿ“–mathematicalโ€”ackโ€”ack.eq_2
ack_three ๐Ÿ“–mathematicalโ€”ack
Monoid.toNatPow
Nat.instMonoid
โ€”ack_succ_zero
ack_succ_succ
zero_add
ack_zero
ack_two
mul_comm
mul_le_mul_right
Nat.instMulLeftMono
pow_le_pow_right'
Nat.instAtLeastTwoHAddOfNat
two_mul
ack_two ๐Ÿ“–mathematicalโ€”ackโ€”ack_succ_zero
ack_succ_succ
zero_add
ack_zero
MulZeroClass.mul_zero
ack_one
ack_zero ๐Ÿ“–mathematicalโ€”ackโ€”ack.eq_1
add_add_one_le_ack ๐Ÿ“–mathematicalโ€”ackโ€”add_lt_ack
add_lt_ack ๐Ÿ“–mathematicalโ€”ackโ€”โ€”
computableโ‚‚_ack ๐Ÿ“–mathematicalโ€”Computableโ‚‚
Primcodable.ofDenumerable
Denumerable.nat
ack
โ€”Partrec.of_eq_tot
Partrecโ‚‚.compโ‚‚
Nat.Partrec.Code.eval_part
Computable.comp
Primrec.to_comp
Nat.Partrec.Code.primrec_pappAck
Computable.fst
Computable.snd
Nat.Partrec.Code.eval_pappAck
exists_lt_ack_of_nat_primrec ๐Ÿ“–mathematicalโ€”ackโ€”ack_pos
add_lt_ack
ack_zero
Nat.unpair_left_le
Nat.unpair_right_le
Nat.pair_lt_max_add_one_sq
max_ack_left
pow_le_pow_left'
Nat.instMulLeftMono
covariant_swap_mul_of_covariant_mul
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
sup_le_sup
LT.lt.le
ack_add_one_sq_lt_ack_add_three
LT.lt.trans
ack_strictMono_right
ack_ack_lt_ack_max_add_two
ack_strictMono_left
LE.le.trans_lt
le_max_left
LT.lt.trans_le
ack_pair_lt
lt_or_ge
max_eq_left
ack_le_ack
max_eq_right
LE.le.trans
add_assoc
le_max_right
self_le_add_left
Nat.instCanonicallyOrderedAdd
ack_succ_succ
ack_mono_left
le_rfl
ack_mono_right
Nat.unpair_add_le
lt_ack_left ๐Ÿ“–mathematicalโ€”ackโ€”LE.le.trans_lt
self_le_add_right
Nat.instCanonicallyOrderedAdd
add_lt_ack
lt_ack_right ๐Ÿ“–mathematicalโ€”ackโ€”LE.le.trans_lt
self_le_add_left
Nat.instCanonicallyOrderedAdd
add_lt_ack
max_ack_left ๐Ÿ“–mathematicalโ€”ackโ€”Monotone.map_max
ack_mono_left
max_ack_right ๐Ÿ“–mathematicalโ€”ackโ€”Monotone.map_max
ack_mono_right
not_nat_primrec_ack_self ๐Ÿ“–mathematicalโ€”ackโ€”LT.lt.false
not_primrec_ack_self ๐Ÿ“–mathematicalโ€”Encodable.encode
Option.encodable
Primcodable.toEncodable
Primcodable.ofDenumerable
Denumerable.nat
ack
Encodable.decode
โ€”Primrec.nat_iff
not_nat_primrec_ack_self
not_primrecโ‚‚_ack ๐Ÿ“–mathematicalโ€”Primrecโ‚‚
Primcodable.ofDenumerable
Denumerable.nat
ack
โ€”not_primrec_ack_self
Primrecโ‚‚.comp
Primrec.id
one_lt_ack_succ_left ๐Ÿ“–mathematicalโ€”ackโ€”zero_add
ack_one
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
ack_succ_zero
ack_succ_succ
one_lt_ack_succ_right ๐Ÿ“–mathematicalโ€”ackโ€”ack_zero
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
Nat.instCanonicallyOrderedAdd
Nat.instZeroLEOneClass
one_lt_ack_succ_left

---

โ† Back to Index