Documentation Verification Report

AkraBazzi

πŸ“ Source: Mathlib/Computability/AkraBazzi/AkraBazzi.lean

Statistics

MetricCount
Definitions0
TheoremsT_isBigO_smoothingFn_mul_asympBound, eventually_deriv_rpow_p_mul_one_add_smoothingFn, eventually_deriv_rpow_p_mul_one_sub_smoothingFn, growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn, growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn, isBigO_apply_r_sub_b, isBigO_asympBound, isBigO_symm_asympBound, isEquivalent_deriv_rpow_p_mul_one_add_smoothingFn, isEquivalent_deriv_rpow_p_mul_one_sub_smoothingFn, isTheta_asympBound, isTheta_deriv_rpow_p_mul_one_add_smoothingFn, isTheta_deriv_rpow_p_mul_one_sub_smoothingFn, rpow_p_mul_one_add_smoothingFn_ge, rpow_p_mul_one_sub_smoothingFn_le, smoothingFn_mul_asympBound_isBigO_T
16
Total16

AkraBazziRecurrence

Theorems

NameKindAssumesProvesValidatesDepends On
T_isBigO_smoothingFn_mul_asympBound πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instMul
Real.instSub
Real.instOne
smoothingFn
Real.instNatCast
asympBound
β€”Asymptotics.isBigO_nat_atTop_induction_of_eventually_pos
Filter.Eventually.of_forall
T_nonneg
Filter.mp_mem
eventually_one_sub_smoothingFn_pos
eventually_asympBound_pos
Filter.univ_mem'
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
bi_min_div_two_pos
eventually_atTop_sumTransform_ge
Filter.eventually_ge_atTop
eventually_bi_mul_le_r
eventually_one_sub_smoothingFn_gt_const
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
rpow_p_mul_one_sub_smoothingFn_le
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Nat.le_ceil
mul_comm
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
g_nonneg
Nat.cast_nonneg'
add_le_add_left
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
a_pos
Finset.sum_congr
asympBound_def'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_gt
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
add_nonneg
zero_le_one
Finset.sum_nonneg
div_nonneg_iff
Real.rpow_nonneg
mul_nonneg
eq_sub_of_add_eq
add_comm
add_eq_of_eq_sub
Finset.sum_Ico_eq_sub
r_lt_n
LE.le.trans
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
sub_le_sub_left
b_pos
Real.rpow_pos_of_pos
Finset.mul_sum
sumCoeffsExp_p_eq_one
mul_one
add_le_add_right
mul_nonpos_of_nonpos_of_nonneg
sub_nonpos
inv_mul_cancelβ‚€
ne_of_gt
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
mul_le_mul
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
eventually_deriv_rpow_p_mul_one_add_smoothingFn πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instAdd
Real.instOne
smoothingFn
Real.instSub
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.log
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_mul
Real.differentiableAt_rpow_const_of_ne
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
differentiableAt_one_add_smoothingFn
eventually_deriv_one_add_smoothingFn
Real.deriv_rpow_const
sub_eq_add_neg
neg_div
mul_neg
mul_div
Real.rpow_add
eventually_deriv_rpow_p_mul_one_sub_smoothingFn πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instSub
Real.instOne
smoothingFn
Real.instAdd
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.log
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_mul
Real.differentiableAt_rpow_const_of_ne
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
differentiableAt_one_sub_smoothingFn
eventually_deriv_one_sub_smoothingFn
Real.deriv_rpow_const
mul_div
Real.rpow_neg_one
Real.rpow_add
sub_eq_add_neg
growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn πŸ“–mathematicalβ€”GrowsPolynomially
Norm.norm
Real
Real.norm
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instAdd
Real.instOne
smoothingFn
β€”eq_or_ne
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
eventually_deriv_one_add_smoothingFn
Filter.univ_mem'
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_pos_of_pos
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
Real.rpow_zero
one_mul
neg_div
norm_neg
Real.norm_of_nonneg
GrowsPolynomially.congr_of_eventuallyEq
GrowsPolynomially.div
GrowsPolynomially.inv
growsPolynomially_id
GrowsPolynomially.pow
growsPolynomially_log
Filter.eventually_ge_atTop
Real.log_nonneg
GrowsPolynomially.of_isTheta
growsPolynomially_rpow
isTheta_deriv_rpow_p_mul_one_add_smoothingFn
norm_nonneg
growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn πŸ“–mathematicalβ€”GrowsPolynomially
Norm.norm
Real
Real.norm
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instSub
Real.instOne
smoothingFn
β€”eq_or_ne
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
eventually_deriv_one_sub_smoothingFn
Filter.univ_mem'
Mathlib.Meta.Positivity.div_nonneg_of_pos_of_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_pos_of_pos
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
Nat.instAtLeastTwoHAddOfNat
even_two_mul
Real.rpow_zero
one_mul
Real.norm_of_nonneg
GrowsPolynomially.congr_of_eventuallyEq
GrowsPolynomially.div
GrowsPolynomially.inv
growsPolynomially_id
GrowsPolynomially.pow
growsPolynomially_log
Filter.eventually_ge_atTop
Real.log_nonneg
GrowsPolynomially.of_isTheta
growsPolynomially_rpow
isTheta_deriv_rpow_p_mul_one_sub_smoothingFn
norm_nonneg
isBigO_apply_r_sub_b πŸ“–mathematicalDifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Set.Ioi
Real.instPreorder
Real.instOne
GrowsPolynomially
Norm.norm
Real.norm
deriv
Asymptotics.IsBigO
Filter.atTop
Nat.instPreorder
Real.instSub
Real.instNatCast
Real.instMul
β€”Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
b_pos
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
div_two_lt_of_pos
b_lt_one
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
min_bi_le
le_of_lt
Asymptotics.isBigO_iff
Filter.Tendsto.const_mul_atTop
Filter.tendsto_id
Filter.mp_mem
Filter.Eventually.natCast_atTop
Real.instArchimedean
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Filter.eventually_gt_atTop
Nat.instNoMaxOrder
Filter.eventually_ge_atTop
eventually_bi_mul_le_r
Filter.univ_mem'
norm_mul
NormedDivisionRing.toNormMulClass
mul_assoc
Convex.norm_image_sub_le_of_norm_deriv_le
DifferentiableOn.differentiableAt
Ioi_mem_nhds
instClosedIicTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
convex_Icc
IsOrderedModule.toPosSMulMono
IsStrictOrderedModule.toIsOrderedModule
IsStrictOrderedRing.toIsStrictOrderedModule
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
one_mul
r_lt_n
isBigO_asympBound πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
Real.norm
Filter.atTop
Nat.instPreorder
asympBound
β€”T_isBigO_smoothingFn_mul_asympBound
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_const_of_tendsto
Filter.Tendsto.comp
Asymptotics.IsEquivalent.tendsto_const
isEquivalent_one_sub_smoothingFn_one
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
Asymptotics.isBigO_refl
one_mul
isBigO_symm_asympBound πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
Real.norm
Filter.atTop
Nat.instPreorder
asympBound
β€”one_mul
Asymptotics.IsEquivalent.mul
Asymptotics.IsEquivalent.symm
Function.const_def
Asymptotics.isEquivalent_const_iff_tendsto
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
Filter.Tendsto.comp
Asymptotics.IsEquivalent.tendsto_const
isEquivalent_one_add_smoothingFn_one
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Asymptotics.IsEquivalent.refl
smoothingFn_mul_asympBound_isBigO_T
isEquivalent_deriv_rpow_p_mul_one_add_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instAdd
Real.instOne
smoothingFn
Real.instSub
β€”eventually_deriv_rpow_p_mul_one_add_smoothingFn
Asymptotics.IsEquivalent.add_isLittleO
Asymptotics.IsEquivalent.mul
Asymptotics.IsEquivalent.refl
isEquivalent_one_add_smoothingFn_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
div_eq_mul_inv
Asymptotics.IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.inv_rev
Asymptotics.isLittleO_const_left
Filter.Tendsto.comp
tendsto_norm_atTop_atTop
Filter.tendsto_pow_atTop
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Real.tendsto_log_atTop
NeZero.charZero_one
RCLike.charZero_rclike
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Nat.instAtLeastTwoHAddOfNat
instIsEmptyFalse
instIsDirectedOrder
Real.instArchimedean
div_one
Asymptotics.IsTheta.const_mul_right
Asymptotics.isTheta_refl
isEquivalent_deriv_rpow_p_mul_one_sub_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instSub
Real.instOne
smoothingFn
β€”eventually_deriv_rpow_p_mul_one_sub_smoothingFn
Asymptotics.IsEquivalent.add_isLittleO
Asymptotics.IsEquivalent.mul
Asymptotics.IsEquivalent.refl
isEquivalent_one_sub_smoothingFn_one
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
div_eq_mul_inv
Asymptotics.IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.inv_rev
Asymptotics.isLittleO_const_left
Filter.Tendsto.comp
tendsto_norm_atTop_atTop
Filter.tendsto_pow_atTop
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Real.tendsto_log_atTop
NeZero.charZero_one
RCLike.charZero_rclike
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Nat.instAtLeastTwoHAddOfNat
instIsEmptyFalse
instIsDirectedOrder
Real.instArchimedean
div_one
Asymptotics.IsTheta.const_mul_right
Asymptotics.isTheta_refl
isTheta_asympBound πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
Real.norm
Filter.atTop
Nat.instPreorder
asympBound
β€”isBigO_asympBound
isBigO_symm_asympBound
isTheta_deriv_rpow_p_mul_one_add_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
Real.norm
Filter.atTop
Real.instPreorder
Norm.norm
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instAdd
Real.instOne
smoothingFn
Real.instSub
β€”Asymptotics.IsTheta.norm_left
Asymptotics.IsEquivalent.isTheta
isEquivalent_deriv_rpow_p_mul_one_add_smoothingFn
Asymptotics.IsTheta.const_mul_left
Asymptotics.isTheta_refl
isTheta_deriv_rpow_p_mul_one_sub_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
Real.norm
Filter.atTop
Real.instPreorder
Norm.norm
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instMul
Real.instPow
Real.instSub
Real.instOne
smoothingFn
β€”Asymptotics.IsTheta.norm_left
Asymptotics.IsEquivalent.isTheta
isEquivalent_deriv_rpow_p_mul_one_sub_smoothingFn
Asymptotics.IsTheta.const_mul_left
Asymptotics.isTheta_refl
rpow_p_mul_one_add_smoothingFn_ge πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
DifferentiableOn.mul
DifferentiableOn.mono
Real.differentiableOn_rpow_const
Set.mem_compl_singleton_iff
ne_of_gt
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Set.mem_Ioi
differentiableOn_one_add_smoothingFn
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.eventually_ne_atTop
Filter.univ_mem'
deriv_fun_mul
differentiableAt_smoothingFn
Asymptotics.IsBigO.add
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
isBigO_deriv_rpow_const_atTop
Asymptotics.isBigO_refl
Asymptotics.IsEquivalent.isBigO
isEquivalent_one_add_smoothingFn_one
mul_one
Asymptotics.IsLittleO.isBigO
isLittleO_deriv_one_add_smoothingFn
Real.rpow_neg_one
Real.rpow_add
sub_eq_add_neg
Asymptotics.IsLittleO.eventuallyLE
isBigO_apply_r_sub_b
growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn
Asymptotics.IsBigO.mul_isLittleO
dist_r_b
Asymptotics.IsBigO.natCast_atTop
Real.instIsStrictOrderedRing
Real.instArchimedean
Nat.instNoMaxOrder
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Real.rpow_add_one
sub_add_cancel
mul_div
Asymptotics.IsTheta.symm
mul_assoc
Asymptotics.IsTheta.const_mul_left
b_pos
Real.rpow_pos_of_pos
Asymptotics.isTheta_refl
Asymptotics.IsTheta.mul
isTheta_smoothingFn_sub_self
norm_sub_rev
Real.le_norm_self
Real.norm_of_nonneg
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
StrictAntiOn.le_iff_ge
strictAntiOn_smoothingFn
Nat.one_lt_cast
mul_inv_cancelβ‚€
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Nat.le_ceil
le_of_lt
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
Nat.strictMono_cast
b_lt_one
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_mul
mul_nonneg
mul_pos
Real.mul_rpow
Nat.cast_nonneg'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.isInt_add
sub_le_iff_le_add'
sub_le_iff_le_add
rpow_p_mul_one_sub_smoothingFn_le πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
DifferentiableOn.mul
DifferentiableOn.mono
Real.differentiableOn_rpow_const
Set.mem_compl_singleton_iff
ne_of_gt
LT.lt.trans
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Set.mem_Ioi
differentiableOn_one_sub_smoothingFn
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.eventually_ne_atTop
Filter.univ_mem'
deriv_fun_mul
differentiableAt_smoothingFn
Asymptotics.IsBigO.add
Asymptotics.IsBigO.mul
NormedDivisionRing.toNormMulClass
isBigO_deriv_rpow_const_atTop
Asymptotics.isBigO_refl
Asymptotics.IsEquivalent.isBigO
isEquivalent_one_sub_smoothingFn_one
mul_one
Asymptotics.IsLittleO.isBigO
isLittleO_deriv_one_sub_smoothingFn
Real.rpow_neg_one
Real.rpow_add
sub_eq_add_neg
Asymptotics.IsLittleO.eventuallyLE
isBigO_apply_r_sub_b
growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn
Asymptotics.IsBigO.mul_isLittleO
dist_r_b
Asymptotics.IsBigO.natCast_atTop
Real.instIsStrictOrderedRing
Real.instArchimedean
Nat.instNoMaxOrder
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
lt_of_le_of_ne'
zero_le
Nat.instCanonicallyOrderedAdd
Real.rpow_add_one
sub_add_cancel
mul_div
Asymptotics.IsTheta.symm
mul_assoc
Asymptotics.IsTheta.const_mul_left
b_pos
Real.rpow_pos_of_pos
Asymptotics.isTheta_refl
Asymptotics.IsTheta.mul
isTheta_smoothingFn_sub_self
Real.le_norm_self
Real.norm_of_nonneg
sub_nonneg_of_le
covariant_swap_add_of_covariant_add
StrictAntiOn.le_iff_ge
strictAntiOn_smoothingFn
Nat.one_lt_cast
mul_inv_cancelβ‚€
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Nat.le_ceil
le_of_lt
mul_lt_mul_of_pos_left
IsStrictOrderedRing.toPosMulStrictMono
Nat.strictMono_cast
b_lt_one
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
one_mul
mul_nonneg
mul_pos
Real.mul_rpow
Nat.cast_nonneg'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
sub_le_iff_le_add'
smoothingFn_mul_asympBound_isBigO_T πŸ“–mathematicalβ€”Asymptotics.IsBigO
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instMul
Real.instAdd
Real.instOne
smoothingFn
Real.instNatCast
asympBound
β€”Asymptotics.isBigO_nat_atTop_induction_of_eventually_pos
Filter.mp_mem
eventually_one_add_smoothingFn_pos
eventually_asympBound_pos
Filter.univ_mem'
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Filter.Eventually.of_forall
T_pos
Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
bi_min_div_two_pos
eventually_atTop_sumTransform_le
Filter.eventually_ge_atTop
eventually_bi_mul_le_r
eventually_one_sub_smoothingFn_gt_const
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
rpow_p_mul_one_add_smoothingFn_ge
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
Nat.le_ceil
mul_comm
div_le_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
g_nonneg
Nat.cast_nonneg'
mul_add
Distrib.leftDistribClass
Finset.mul_sum
add_le_add_left
covariant_swap_add_of_covariant_add
Finset.sum_le_sum
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
a_pos
Finset.sum_congr
asympBound_def'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_gt
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
add_nonneg
zero_le_one
Finset.sum_nonneg
div_nonneg_iff
Real.rpow_nonneg
eq_sub_of_add_eq
add_comm
add_eq_of_eq_sub
Finset.sum_Ico_eq_sub
r_lt_n
LE.le.trans
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
sub_le_sub_left
b_pos
Real.rpow_pos_of_pos
sumCoeffsExp_p_eq_one
mul_one
Mathlib.Tactic.Ring.mul_one
add_le_add_right
mul_nonneg
sub_nonneg
one_add_smoothingFn_le_two
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero

---

← Back to Index