Documentation Verification Report

GrowsPolynomially

πŸ“ Source: Mathlib/Computability/AkraBazzi/GrowsPolynomially.lean

Statistics

MetricCount
DefinitionsGrowsPolynomially
1
Theoremsabs, add, add_isLittleO, congr_of_eventuallyEq, const_mul, div, eventually_atTop_ge, eventually_atTop_ge_nat, eventually_atTop_le, eventually_atTop_le_nat, eventually_atTop_nonneg_or_nonpos, eventually_atTop_zero_or_pos_or_neg, eventually_zero_of_frequently_zero, iff_eventuallyEq, inv, mul, neg, neg_iff, norm, of_isEquivalent, of_isEquivalent_const, of_isTheta, pow, rpow, zpow, growsPolynomially_const, growsPolynomially_id, growsPolynomially_log, growsPolynomially_pow, growsPolynomially_rpow, growsPolynomially_zpow
31
Total32

AkraBazziRecurrence

Definitions

NameCategoryTheorems
GrowsPolynomially πŸ“–MathDef
14 mathmath: GrowsPolynomially.of_isEquivalent_const, growsPolynomially_id, growsPolynomially_const, growsPolynomially_pow, growsPolynomially_one_add_smoothingFn, GrowsPolynomially.iff_eventuallyEq, GrowsPolynomially.neg_iff, growsPolynomially_rpow, growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn, growsPolynomially_one_sub_smoothingFn, growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn, growsPolynomially_zpow, growsPolynomially_log, g_grows_poly

Theorems

NameKindAssumesProvesValidatesDepends On
growsPolynomially_const πŸ“–mathematicalβ€”GrowsPolynomiallyβ€”Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Filter.univ_mem'
one_mul
Set.Icc_self
growsPolynomially_id πŸ“–mathematicalβ€”GrowsPolynomiallyβ€”Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Filter.univ_mem'
one_mul
growsPolynomially_log πŸ“–mathematicalβ€”GrowsPolynomially
Real.log
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNat_lt_true
Real.instIsOrderedRing
Filter.Tendsto.const_mul_atTop
Real.tendsto_log_atTop
Filter.mp_mem
Filter.Tendsto.eventually_forall_ge_atTop
Filter.tendsto_id
Filter.Tendsto.eventually
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instNontrivial
Filter.univ_mem'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
Real.log_mul
ne_of_gt
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
mul_comm
Real.log_le_log
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
one_mul
growsPolynomially_pow πŸ“–mathematicalβ€”GrowsPolynomially
Real
Monoid.toNatPow
Real.instMonoid
β€”GrowsPolynomially.pow
growsPolynomially_id
Filter.eventually_ge_atTop
growsPolynomially_rpow πŸ“–mathematicalβ€”GrowsPolynomially
Real
Real.instPow
β€”GrowsPolynomially.rpow
growsPolynomially_id
Filter.eventually_ge_atTop
growsPolynomially_zpow πŸ“–mathematicalβ€”GrowsPolynomially
Real
DivInvMonoid.toZPow
Real.instDivInvMonoid
β€”GrowsPolynomially.zpow
growsPolynomially_id
Filter.eventually_ge_atTop

AkraBazziRecurrence.GrowsPolynomially

Theorems

NameKindAssumesProvesValidatesDepends On
abs πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyabs
Real
Real.lattice
Real.instAddGroup
β€”eventually_atTop_nonneg_or_nonpos
Filter.mp_mem
Filter.univ_mem'
abs_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
iff_eventuallyEq
abs_of_nonpos
neg
add πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Filter.EventuallyLE
Real
Real.instLE
Filter.atTop
Real.instPreorder
Pi.instZero
Real.instZero
Real.instAddβ€”lt_min
lt_max_of_lt_left
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
Filter.tendsto_id
Filter.univ_mem'
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_lt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
mul_add
Distrib.leftDistribClass
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
min_le_left
min_le_right
le_max_left
le_max_right
add_isLittleO πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
Real.instAddβ€”eventually_atTop_nonneg_or_nonpos
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
mul_pos
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Filter.tendsto_id
Asymptotics.isLittleO_iff
Mathlib.Meta.NormNum.isNNRat_lt_true
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Filter.univ_mem'
one_mul
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
le_of_lt
Real.norm_of_nonneg
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.le_norm_self
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sub_eq_add_neg
Real.norm_eq_abs
neg_abs_le
sub_le_sub_left
covariant_swap_add_of_covariant_add
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Tactic.Ring.neg_zero
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Mathlib.Tactic.Ring.mul_pf_left
Real.norm_of_nonpos
Mathlib.Tactic.Ring.neg_congr
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsNat.to_isInt
le_of_neg_le_neg
neg_neg
neg_mul
neg_div
congr_of_eventuallyEq πŸ“–β€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
AkraBazziRecurrence.GrowsPolynomially
β€”β€”Filter.mp_mem
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
Filter.tendsto_id
Filter.univ_mem'
const_mul πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyReal
Real.instMul
β€”mul
AkraBazziRecurrence.growsPolynomially_const
div πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyReal
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”div_eq_mul_inv
mul
inv
eventually_atTop_ge πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
AkraBazziRecurrence.GrowsPolynomially
Real.instLT
Filter.Eventually
Filter.atTop
β€”Filter.mp_mem
Filter.univ_mem'
eventually_atTop_ge_nat πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
AkraBazziRecurrence.GrowsPolynomially
Real.instLT
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”eventually_atTop_ge
Filter.Eventually.natCast_atTop
Real.instIsOrderedRing
Real.instArchimedean
eventually_atTop_le πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
AkraBazziRecurrence.GrowsPolynomially
Real.instLT
Filter.Eventually
Filter.atTop
β€”Filter.mp_mem
Filter.univ_mem'
eventually_atTop_le_nat πŸ“–mathematicalReal
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
AkraBazziRecurrence.GrowsPolynomially
Real.instLT
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”eventually_atTop_le
Filter.Eventually.natCast_atTop
Real.instIsOrderedRing
Real.instArchimedean
eventually_atTop_nonneg_or_nonpos πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyFilter.Eventually
Real
Real.instLE
Real.instZero
Filter.atTop
Real.instPreorder
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Nat.cast_zero
lt_trichotomy
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
Set.mem_Icc
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isRat_le_true
Mathlib.Meta.NormNum.IsNNRat.to_isRat
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
CancelDenoms.derive_trans
CancelDenoms.sub_subst
CancelDenoms.mul_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Meta.NormNum.isNat_lt_true
Set.nonempty_of_mem
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_add_gt
Set.nonempty_Icc
nonneg_of_mul_nonneg_right
IsStrictOrderedRing.toPosMulStrictMono
lt_of_not_ge
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
nonpos_of_mul_nonpos_right
Filter.eventually_atTop
instIsDirectedOrder
Real.instArchimedean
Set.Icc_self
Real.induction_Ico_mul
lt_max_of_lt_right
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
one_le_powβ‚€
Real.instZeroLEOneClass
IsOrderedRing.toPosMulMono
Mathlib.Meta.NormNum.isNat_le_true
le_or_gt
le_of_lt
eventually_atTop_zero_or_pos_or_neg πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyFilter.Eventually
Real
Real.instZero
Filter.atTop
Real.instPreorder
Real.instLT
β€”eventually_zero_of_frequently_zero
eventually_atTop_nonneg_or_nonpos
Filter.eventually_and
Filter.mp_mem
Filter.univ_mem'
eventually_zero_of_frequently_zero πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Filter.Frequently
Real
Real.instZero
Filter.atTop
Real.instPreorder
Filter.Eventuallyβ€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Nat.cast_zero
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.eventually_forall_ge_atTop
Filter.univ_mem'
Filter.frequently_atTop
instIsDirectedOrder
Real.instArchimedean
Mathlib.Meta.NormNum.isNat_lt_true
le_of_max_le_right
CharP.cast_eq_zero
CharP.ofCharZero
Int.instCharZero
neg_zero
zero_sub
zpow_zero
one_mul
MulZeroClass.mul_zero
Set.Icc_self
le_of_max_le_left
one_div
zpow_neg
zpow_one
neg_add
Nat.cast_add
Set.left_mem_Icc
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
zpow_le_zpow_rightβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
Mathlib.Meta.NormNum.isNat_le_true
le_of_lt
zpow_neg_one
mul_assoc
zpow_addβ‚€
Mathlib.Meta.NormNum.isNat_eq_false
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_zero_add
le_rfl
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.logb_le_logb
zpow_pos
div_pos
Real.rpow_intCast
Real.logb_rpow
neg_le_neg_iff
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Int.cast_sub
Int.cast_neg
Int.cast_natCast
Int.cast_one
neg_sub
sub_neg_eq_add
Nat.le_ceil
add_comm
Nat.ceil_le_floor_add_one
div_le_iffβ‚€
neg_neg
neg_nonneg
Real.logb_nonpos
div_le_one
Nat.floor_le
iff_eventuallyEq πŸ“–mathematicalFilter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
AkraBazziRecurrence.GrowsPolynomiallyβ€”congr_of_eventuallyEq
Filter.EventuallyEq.symm
inv πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyReal
Real.instInv
β€”eventually_atTop_zero_or_pos_or_neg
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
Filter.mp_mem
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
Filter.tendsto_id
Filter.univ_mem'
inv_zero
MulZeroClass.mul_zero
Set.Icc_self
ne_of_lt
ne_of_gt
abs_inv
abs
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
abs_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
mul_inv
inv_antiβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
mul_pos
Mathlib.Meta.Positivity.abs_pos_of_ne_zero
abs_of_nonneg
inv_nonneg_of_nonneg
le_of_lt
iff_eventuallyEq
abs_of_nonpos
inv_nonpos
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
neg_neg
neg
mul πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyReal
Real.instMul
β€”abs
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Filter.mp_mem
Filter.univ_mem'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
mul_le_mul
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
IsOrderedRing.toMulPosMono
mul_nonneg
le_of_lt
abs_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
eventually_atTop_nonneg_or_nonpos
abs_of_nonneg
iff_eventuallyEq
abs_of_nonpos
mul_neg
neg_mul
neg_neg
neg
neg πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyPi.instNeg
Real
Real.instNeg
β€”Filter.mp_mem
Filter.univ_mem'
Real.instIsOrderedAddMonoid
neg_mul_eq_mul_neg
neg_neg
neg_iff πŸ“–mathematicalβ€”AkraBazziRecurrence.GrowsPolynomially
Pi.instNeg
Real
Real.instNeg
β€”neg
neg_neg
norm πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomiallyNorm.norm
Real
Real.norm
β€”abs
of_isEquivalent πŸ“–β€”AkraBazziRecurrence.GrowsPolynomially
Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
β€”β€”add_sub_cancel
add_isLittleO
of_isEquivalent_const πŸ“–mathematicalAsymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
AkraBazziRecurrence.GrowsPolynomiallyβ€”of_isEquivalent
AkraBazziRecurrence.growsPolynomially_const
of_isTheta πŸ“–β€”AkraBazziRecurrence.GrowsPolynomially
Asymptotics.IsTheta
Real
Real.norm
Filter.atTop
Real.instPreorder
Filter.Eventually
Real.instLE
Real.instZero
β€”β€”Asymptotics.isBigO_iff''
Asymptotics.IsTheta.isBigO_symm
Asymptotics.isBigO_iff'
Asymptotics.IsTheta.isBigO
norm
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
inv_mul_cancelβ‚€
ne_of_gt
Filter.mp_mem
Filter.eventually_ge_atTop
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Filter.tendsto_id
Filter.univ_mem'
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
le_of_lt
one_mul
Real.norm_of_nonneg
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.inv_congr
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
mul_one
pow πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Filter.Eventually
Real
Real.instLE
Real.instZero
Filter.atTop
Real.instPreorder
Monoid.toNatPow
Real.instMonoid
β€”rpow
rpow πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Filter.Eventually
Real
Real.instLE
Real.instZero
Filter.atTop
Real.instPreorder
Real.instPowβ€”Real.rpow_pos_of_pos
le_or_gt
Filter.mp_mem
Filter.Tendsto.eventually_forall_ge_atTop
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
Filter.tendsto_id
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
Real.mul_rpow
le_of_lt
Real.rpow_le_rpow
mul_nonneg
IsOrderedRing.toPosMulMono
eventually_atTop_zero_or_pos_or_neg
Mathlib.Meta.NormNum.isNat_lt_true
RCLike.charZero_rclike
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Nat.cast_one
Real.zero_rpow
ne_of_lt
MulZeroClass.mul_zero
Set.Icc_self
Real.rpow_le_rpow_of_nonpos
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Filter.NeBot.ne
Filter.atTop_neBot
instIsDirectedOrder
Real.instArchimedean
Filter.eventually_false_iff_eq_bot
zpow πŸ“–mathematicalAkraBazziRecurrence.GrowsPolynomially
Filter.Eventually
Real
Real.instLE
Real.instZero
Filter.atTop
Real.instPreorder
DivInvMonoid.toZPow
Real.instDivInvMonoid
β€”rpow

---

← Back to Index