Documentation Verification Report

SumTransform

πŸ“ Source: Mathlib/Computability/AkraBazzi/SumTransform.lean

Statistics

MetricCount
DefinitionsAkraBazziRecurrence, asympBound, max_bi, min_bi, nβ‚€, p, smoothingFn, sumTransform
8
TheoremsT_gt_zero', T_nonneg, T_pos, a_pos, asympBound_def, asympBound_def', asympBound_pos, b_lt_one, b_pos, bi_min_div_two_lt_one, bi_min_div_two_pos, continuous_sumCoeffsExp, deriv_smoothingFn, differentiableAt_one_add_smoothingFn, differentiableAt_one_sub_smoothingFn, differentiableAt_smoothingFn, differentiableOn_one_add_smoothingFn, differentiableOn_one_sub_smoothingFn, dist_r_b, dist_r_b', eventually_asympBound_pos, eventually_asympBound_r_pos, eventually_atTop_sumTransform_ge, eventually_atTop_sumTransform_le, eventually_b_le_r, eventually_bi_mul_le_r, eventually_deriv_one_add_smoothingFn, eventually_deriv_one_sub_smoothingFn, eventually_log_b_mul_pos, eventually_one_add_smoothingFn_nonneg, eventually_one_add_smoothingFn_pos, eventually_one_add_smoothingFn_r_pos, eventually_one_sub_smoothingFn_gt_const, eventually_one_sub_smoothingFn_gt_const_real, eventually_one_sub_smoothingFn_nonneg, eventually_one_sub_smoothingFn_pos, eventually_one_sub_smoothingFn_pos_real, eventually_one_sub_smoothingFn_r_pos, eventually_r_ge, eventually_r_le_b, eventually_r_lt_n, eventually_r_pos, exists_eventually_const_mul_le_r, exists_eventually_r_le_const_mul, g_grows_poly, g_nonneg, growsPolynomially_one_add_smoothingFn, growsPolynomially_one_sub_smoothingFn, h_rec, injective_sumCoeffsExp, isEquivalent_one_add_smoothingFn_one, isEquivalent_one_sub_smoothingFn_one, isEquivalent_smoothingFn_sub_self, isLittleO_deriv_one_add_smoothingFn, isLittleO_deriv_one_sub_smoothingFn, isLittleO_deriv_smoothingFn, isLittleO_self_div_log_id, isLittleO_smoothingFn_one, isTheta_smoothingFn_sub_self, max_bi_le, min_bi_le, nβ‚€_gt_zero, one_add_smoothingFn_le_two, one_mem_range_sumCoeffsExp, p_def, r_lt_n, strictAntiOn_one_add_smoothingFn, strictAntiOn_smoothingFn, strictAnti_sumCoeffsExp, strictMonoOn_one_sub_smoothingFn, sumCoeffsExp_p_eq_one, sumTransform_def, tendsto_atTop_r, tendsto_atTop_r_real, tendsto_atTop_sumCoeffsExp, tendsto_zero_sumCoeffsExp
76
Total84

AkraBazziRecurrence

Definitions

NameCategoryTheorems
asympBound πŸ“–CompOp
9 mathmath: T_isBigO_smoothingFn_mul_asympBound, isBigO_symm_asympBound, eventually_asympBound_pos, asympBound_def, asympBound_def', isBigO_asympBound, isTheta_asympBound, smoothingFn_mul_asympBound_isBigO_T, asympBound_pos
max_bi πŸ“–CompOp
1 mathmath: max_bi_le
min_bi πŸ“–CompOp
3 mathmath: min_bi_le, bi_min_div_two_pos, bi_min_div_two_lt_one
nβ‚€ πŸ“–CompOp
1 mathmath: nβ‚€_gt_zero
p πŸ“–CompOp
4 mathmath: asympBound_def, p_def, asympBound_def', sumCoeffsExp_p_eq_one
smoothingFn πŸ“–CompOp
39 mathmath: T_isBigO_smoothingFn_mul_asympBound, isLittleO_deriv_one_add_smoothingFn, differentiableAt_one_add_smoothingFn, isTheta_deriv_rpow_p_mul_one_sub_smoothingFn, eventually_one_sub_smoothingFn_gt_const, eventually_one_sub_smoothingFn_gt_const_real, eventually_deriv_one_add_smoothingFn, strictMonoOn_one_sub_smoothingFn, one_add_smoothingFn_le_two, isTheta_smoothingFn_sub_self, differentiableAt_one_sub_smoothingFn, eventually_deriv_rpow_p_mul_one_sub_smoothingFn, eventually_one_sub_smoothingFn_pos, eventually_deriv_rpow_p_mul_one_add_smoothingFn, isTheta_deriv_rpow_p_mul_one_add_smoothingFn, differentiableOn_one_add_smoothingFn, strictAntiOn_one_add_smoothingFn, eventually_one_sub_smoothingFn_pos_real, isEquivalent_one_sub_smoothingFn_one, eventually_one_sub_smoothingFn_nonneg, growsPolynomially_one_add_smoothingFn, eventually_deriv_one_sub_smoothingFn, isEquivalent_smoothingFn_sub_self, differentiableOn_one_sub_smoothingFn, deriv_smoothingFn, isLittleO_smoothingFn_one, isEquivalent_deriv_rpow_p_mul_one_add_smoothingFn, isEquivalent_one_add_smoothingFn_one, differentiableAt_smoothingFn, isLittleO_deriv_one_sub_smoothingFn, growsPolynomially_deriv_rpow_p_mul_one_sub_smoothingFn, isLittleO_deriv_smoothingFn, growsPolynomially_one_sub_smoothingFn, growsPolynomially_deriv_rpow_p_mul_one_add_smoothingFn, isEquivalent_deriv_rpow_p_mul_one_sub_smoothingFn, smoothingFn_mul_asympBound_isBigO_T, eventually_one_add_smoothingFn_nonneg, eventually_one_add_smoothingFn_pos, strictAntiOn_smoothingFn
sumTransform πŸ“–CompOp
2 mathmath: sumTransform_def, asympBound_def

Theorems

NameKindAssumesProvesValidatesDepends On
T_gt_zero' πŸ“–mathematicalnβ‚€Real
Real.instLT
Real.instZero
β€”β€”
T_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
β€”le_of_lt
T_pos
T_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
β€”lt_or_ge
T_gt_zero'
g_nonneg
add_pos_of_pos_of_nonneg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Finset.sum_pos
Real.instIsOrderedCancelAddMonoid
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
a_pos
r_lt_n
Finset.univ_nonempty
Real.instIsOrderedRing
a_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
β€”β€”
asympBound_def πŸ“–mathematicalβ€”asympBound
Real
Real.instAdd
Real.instPow
Real.instNatCast
p
sumTransform
β€”β€”
asympBound_def' πŸ“–mathematicalβ€”asympBound
Real
Real.instMul
Real.instPow
Real.instNatCast
p
Real.instAdd
Real.instOne
Finset.sum
Real.instAddCommMonoid
Finset.range
DivInvMonoid.toDiv
Real.instDivInvMonoid
β€”Finset.sum_congr
Nat.Ico_zero_eq_range
mul_add
Distrib.leftDistribClass
mul_one
asympBound_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
asympBound
β€”add_zero
mul_one
Real.rpow_pos_of_pos
Real.instIsOrderedRing
Real.instNontrivial
asympBound_def'
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
g_nonneg
Finset.sum_nonneg
div_nonneg
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.rpow_nonneg
le_of_lt
Nat.cast_pos'
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
b_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
Real.instOne
β€”β€”
b_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
β€”β€”
bi_min_div_two_lt_one πŸ“–mathematicalβ€”Real
Real.instLT
DivInvMonoid.toDiv
Real.instDivInvMonoid
min_bi
Finite.of_fintype
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instOne
β€”Finite.of_fintype
b_pos
Nat.instAtLeastTwoHAddOfNat
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
b_lt_one
bi_min_div_two_pos πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
DivInvMonoid.toDiv
Real.instDivInvMonoid
min_bi
Finite.of_fintype
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
b_pos
Real.instIsOrderedRing
Real.instNontrivial
continuous_sumCoeffsExp πŸ“–mathematicalβ€”Continuous
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
β€”continuous_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.mul
IsTopologicalSemiring.toContinuousMul
continuous_const
Continuous.rpow
continuous_id
ne_of_gt
b_pos
deriv_smoothingFn πŸ“–mathematicalβ€”deriv
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
smoothingFn
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.instInv
Monoid.toNatPow
Real.instMonoid
Real.log
β€”one_div
Real.deriv_inv_log
differentiableAt_one_add_smoothingFn πŸ“–mathematicalReal
Real.instLT
Real.instOne
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAdd
smoothingFn
β€”DifferentiableAt.add
differentiableAt_const
differentiableAt_smoothingFn
differentiableAt_one_sub_smoothingFn πŸ“–mathematicalReal
Real.instLT
Real.instOne
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
smoothingFn
β€”DifferentiableAt.sub
differentiableAt_const
differentiableAt_smoothingFn
differentiableAt_smoothingFn πŸ“–mathematicalReal
Real.instLT
Real.instOne
DifferentiableAt
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
smoothingFn
β€”Real.log_ne_zero_of_pos_of_ne_one
lt_trans
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
ne_of_gt
one_div
DifferentiableAt.inv
Real.differentiableAt_log
differentiableOn_one_add_smoothingFn πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAdd
Real.instOne
smoothingFn
Set.Ioi
Real.instPreorder
β€”DifferentiableAt.differentiableWithinAt
differentiableAt_one_add_smoothingFn
differentiableOn_one_sub_smoothingFn πŸ“–mathematicalβ€”DifferentiableOn
Real
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
Real.instOne
smoothingFn
Set.Ioi
Real.instPreorder
β€”DifferentiableAt.differentiableWithinAt
differentiableAt_one_sub_smoothingFn
dist_r_b πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
Real.instNatCast
Real.instMul
DivInvMonoid.toDiv
Real.instDivInvMonoid
Monoid.toNatPow
Real.instMonoid
Real.log
β€”β€”
dist_r_b' πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
norm_div
RCLike.norm_natCast
norm_pow
NormedDivisionRing.to_normOneClass
NormedDivisionRing.toNormMulClass
sq_abs
Asymptotics.IsLittleO.eventuallyLE
dist_r_b
eventually_asympBound_pos πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLT
Real.instZero
asympBound
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
asympBound_pos
eventually_asympBound_r_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
Filter.Tendsto.eventually
tendsto_atTop_r
eventually_asympBound_pos
eventually_atTop_sumTransform_ge πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”exists_eventually_const_mul_le_r
GrowsPolynomially.eventually_atTop_ge_nat
g_grows_poly
exists_eventually_r_le_const_mul
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
lt_min
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
Real.rpow_pos_of_pos
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
eventually_r_lt_n
eventually_r_pos
Filter.univ_mem'
g_nonneg
le_of_lt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_or_gt
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Finset.sum_le_sum
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Finset.mem_Ico
Set.mem_Icc
Real.rpow_nonneg
Nat.cast_nonneg'
div_le_divβ‚€
mul_nonneg
le_refl
Real.rpow_le_rpow
Nat.mono_cast
Finset.card_nsmul_le_sum
nsmul_eq_mul
mul_assoc
Nat.card_Ico
Nat.cast_sub
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
sub_le_sub_left
covariant_swap_add_of_covariant_add
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.mul_one
Real.rpow_add_one
ne_of_gt
div_self
mul_one
min_le_left
Real.rpow_le_rpow_of_nonpos
Finset.Nonempty.card_pos
Finset.Aesop.nonempty_Ico_of_lt
Real.mul_rpow
one_mul
min_le_right
eventually_atTop_sumTransform_le πŸ“–mathematicalβ€”Real
Real.instLT
Real.instZero
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”exists_eventually_const_mul_le_r
GrowsPolynomially.eventually_atTop_le_nat
g_grows_poly
lt_max_of_lt_left
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
eventually_r_lt_n
eventually_r_pos
Filter.univ_mem'
g_nonneg
le_of_lt
Nat.cast_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
le_or_gt
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
Finset.sum_le_sum
div_le_div_of_nonneg_right
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
Finset.mem_Ico
Set.mem_Icc
Real.rpow_nonneg
Nat.cast_nonneg'
Real.rpow_pos_of_pos
div_le_divβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
mul_nonneg
le_refl
Real.rpow_le_rpow
Nat.mono_cast
Finset.sum_le_card_nsmul
nsmul_eq_mul
mul_assoc
Nat.card_Ico
Nat.cast_sub
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Mathlib.Meta.Positivity.div_nonneg_of_nonneg_of_pos
mul_pos
Real.rpow_add_one
ne_of_gt
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Tactic.Ring.inv_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
mul_comm
Real.mul_rpow
div_self
mul_one
le_max_right
Real.rpow_le_rpow_of_nonpos
le_max_left
eventually_b_le_r πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
dist_r_b'
Filter.univ_mem'
le_of_lt
b_pos
sub_le_iff_le_add
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
add_comm
norm_mul
NormedDivisionRing.toNormMulClass
Real.norm_of_nonneg
RCLike.norm_natCast
norm_sub_norm_le
norm_sub_rev
eventually_bi_mul_le_r πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Finite.of_fintype
b_pos
isLittleO_self_div_log_id
Nat.instAtLeastTwoHAddOfNat
Asymptotics.isLittleO_iff
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Filter.mp_mem
eventually_b_le_r
Filter.univ_mem'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.add_pf_zero_add
sub_le_sub_left
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Real.norm_of_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
sub_le_sub_right
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
min_bi_le
div_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
eventually_deriv_one_add_smoothingFn πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAdd
Real.instOne
smoothingFn
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.instInv
Monoid.toNatPow
Real.instMonoid
Real.log
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_add
differentiableAt_smoothingFn
deriv_const'
zero_add
deriv_smoothingFn
eventually_deriv_one_sub_smoothingFn πŸ“–mathematicalβ€”Filter.EventuallyEq
Real
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
Real.instOne
smoothingFn
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instInv
Monoid.toNatPow
Real.instMonoid
Real.log
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_sub
differentiableAt_smoothingFn
deriv_const'
zero_sub
deriv_smoothingFn
neg_div
neg_neg
eventually_log_b_mul_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
Filter.Tendsto.comp
Real.tendsto_log_atTop
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
b_pos
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instNontrivial
eventually_one_add_smoothingFn_nonneg πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLE
Real.instZero
Real.instAdd
Real.instOne
smoothingFn
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
eventually_one_add_smoothingFn_pos
Filter.univ_mem'
le_of_lt
eventually_one_add_smoothingFn_pos πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLT
Real.instZero
Real.instAdd
Real.instOne
smoothingFn
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”isLittleO_smoothingFn_one
Filter.Eventually.natCast_atTop
Real.instIsOrderedRing
Real.instArchimedean
Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instNontrivial
Nat.instAtLeastTwoHAddOfNat
Asymptotics.isLittleO_iff
one_div
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Filter.univ_mem'
Real.log_pos
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Mathlib.Meta.Positivity.pos_of_isNat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
div_pos
eventually_one_add_smoothingFn_r_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
Filter.Tendsto.eventually
tendsto_atTop_r
eventually_one_add_smoothingFn_pos
eventually_one_sub_smoothingFn_gt_const πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Eventually
Real.instSub
smoothingFn
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”Filter.Eventually.natCast_atTop
Real.instIsOrderedRing
Real.instArchimedean
eventually_one_sub_smoothingFn_gt_const_real
eventually_one_sub_smoothingFn_gt_const_real πŸ“–mathematicalReal
Real.instLT
Real.instOne
Filter.Eventually
Real.instSub
smoothingFn
Filter.atTop
Real.instPreorder
β€”Asymptotics.isEquivalent_const_iff_tendsto
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
isEquivalent_one_sub_smoothingFn_one
tendsto_order
instOrderTopologyReal
eventually_one_sub_smoothingFn_nonneg πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLE
Real.instZero
Real.instSub
Real.instOne
smoothingFn
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
eventually_one_sub_smoothingFn_pos
Filter.univ_mem'
le_of_lt
eventually_one_sub_smoothingFn_pos πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLT
Real.instZero
Real.instSub
Real.instOne
smoothingFn
Real.instNatCast
Filter.atTop
Nat.instPreorder
β€”Filter.Eventually.natCast_atTop
Real.instIsOrderedRing
Real.instArchimedean
eventually_one_sub_smoothingFn_pos_real
eventually_one_sub_smoothingFn_pos_real πŸ“–mathematicalβ€”Filter.Eventually
Real
Real.instLT
Real.instZero
Real.instSub
Real.instOne
smoothingFn
Filter.atTop
Real.instPreorder
β€”eventually_one_sub_smoothingFn_gt_const_real
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
eventually_one_sub_smoothingFn_r_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
Filter.Tendsto.eventually
tendsto_atTop_r_real
eventually_one_sub_smoothingFn_pos_real
eventually_r_ge πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”exists_eventually_const_mul_le_r
Filter.mp_mem
Real.instIsStrictOrderedRing
Filter.eventually_ge_atTop
Filter.univ_mem'
mul_div_assoc
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
ne_of_gt
mul_le_mul_of_nonneg_left
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
eventually_r_le_b πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
dist_r_b'
Filter.univ_mem'
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.le_norm_self
eventually_r_lt_n πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.mp_mem
Filter.eventually_ge_atTop
Filter.univ_mem'
r_lt_n
eventually_r_pos πŸ“–mathematicalβ€”Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Filter.eventually_all
Finite.of_fintype
Filter.Tendsto.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
tendsto_atTop_r
exists_eventually_const_mul_le_r πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Finite.of_fintype
b_pos
Nat.instAtLeastTwoHAddOfNat
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
bi_min_div_two_lt_one
eventually_bi_mul_le_r
exists_eventually_r_le_const_mul πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.Ioo
Real.instPreorder
Real.instZero
Real.instOne
Filter.Eventually
Filter.atTop
Nat.instPreorder
β€”Finite.of_fintype
Nat.instAtLeastTwoHAddOfNat
b_pos
b_lt_one
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
add_pos'
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
div_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
RCLike.charZero_rclike
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Meta.NormNum.IsRat.to_raw_eq
Mathlib.Meta.NormNum.isRat_mul
Mathlib.Meta.NormNum.IsInt.to_isRat
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNNRat.of_raw
Mathlib.Meta.NormNum.IsNNRat.den_nz
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsRat.to_isNNRat
Mathlib.Meta.NormNum.isRat_add
Mathlib.Meta.NormNum.IsRat.of_raw
Mathlib.Meta.NormNum.IsRat.den_nz
Mathlib.Tactic.Ring.mul_congr
add_lt_add_left
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
mul_lt_mul_of_pos_right
IsStrictOrderedRing.toMulPosStrictMono
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNNRat_add
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.isNNRat_div
isLittleO_self_div_log_id
Asymptotics.isLittleO_iff
Filter.mp_mem
eventually_r_le_b
Filter.univ_mem'
add_le_add_right
Real.norm_of_nonneg
Nat.cast_nonneg'
Real.instZeroLEOneClass
div_nonneg
Even.pow_nonneg
IsStrictOrderedRing.toIsOrderedRing
AddGroup.existsAddOfLE
even_two_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
mul_le_mul_of_nonneg_right
IsOrderedRing.toMulPosMono
add_le_add_left
max_bi_le
g_grows_poly πŸ“–mathematicalβ€”GrowsPolynomiallyβ€”β€”
g_nonneg πŸ“–β€”Real
Real.instLE
Real.instZero
β€”β€”β€”
growsPolynomially_one_add_smoothingFn πŸ“–mathematicalβ€”GrowsPolynomially
Real
Real.instAdd
Real.instOne
smoothingFn
β€”GrowsPolynomially.of_isEquivalent_const
isEquivalent_one_add_smoothingFn_one
growsPolynomially_one_sub_smoothingFn πŸ“–mathematicalβ€”GrowsPolynomially
Real
Real.instSub
Real.instOne
smoothingFn
β€”GrowsPolynomially.of_isEquivalent_const
isEquivalent_one_sub_smoothingFn_one
h_rec πŸ“–mathematicalnβ‚€Real
Real.instAdd
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instNatCast
β€”β€”
injective_sumCoeffsExp πŸ“–mathematicalβ€”Real
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
β€”StrictAnti.injective
strictAnti_sumCoeffsExp
isEquivalent_one_add_smoothingFn_one πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
Real.instAdd
Real.instOne
smoothingFn
β€”Asymptotics.IsEquivalent.add_isLittleO
Asymptotics.IsEquivalent.refl
isLittleO_smoothingFn_one
isEquivalent_one_sub_smoothingFn_one πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Real.instPreorder
Real.instSub
Real.instOne
smoothingFn
β€”Asymptotics.IsEquivalent.sub_isLittleO
Asymptotics.IsEquivalent.refl
isLittleO_smoothingFn_one
isEquivalent_smoothingFn_sub_self πŸ“–mathematicalβ€”Asymptotics.IsEquivalent
Real
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
Filter.atTop
Nat.instPreorder
Real.instSub
smoothingFn
Real.instMul
Real.instNatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNeg
Real.log
Monoid.toNatPow
Real.instMonoid
β€”Filter.mp_mem
eventually_log_b_mul_pos
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
Nat.instNoMaxOrder
Filter.univ_mem'
Real.log_pos
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
one_div
inv_sub_inv
ne_of_gt
Nat.instCanonicallyOrderedAdd
Real.log_neg_eq_log
Real.log_one
Filter.eventually_ne_atTop
b_pos
Real.log_mul
sub_add_eq_sub_sub
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.neg_congr
Asymptotics.IsEquivalent.div
Asymptotics.IsEquivalent.refl
Asymptotics.IsEquivalent.mul
add_comm
Asymptotics.IsEquivalent.add_isLittleO
Asymptotics.IsLittleO.natCast_atTop
Real.instIsStrictOrderedRing
Real.instArchimedean
Real.isLittleO_const_log_atTop
pow_two
isLittleO_deriv_one_add_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instAdd
Real.instOne
smoothingFn
Real.instInv
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_add
differentiableAt_smoothingFn
deriv_const'
zero_add
isLittleO_deriv_smoothingFn
isLittleO_deriv_one_sub_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instSub
Real.instOne
smoothingFn
Real.instInv
β€”Filter.mp_mem
Filter.eventually_gt_atTop
instNoTopOrderOfNoMaxOrder
instNoMaxOrderOfNontrivial
Real.instIsOrderedRing
Real.instNontrivial
Filter.univ_mem'
deriv_fun_sub
differentiableAt_smoothingFn
deriv_const'
zero_sub
Asymptotics.isLittleO_neg_left
isLittleO_deriv_smoothingFn
isLittleO_deriv_smoothingFn πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
deriv
DenselyNormedField.toNontriviallyNormedField
Real.denselyNormedField
Real.instAddCommGroup
NormedSpace.toModule
Real.normedField
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalSeminormedCommRing.toNonUnitalSeminormedRing
SeminormedCommRing.toNonUnitalSeminormedCommRing
NormedCommRing.toSeminormedCommRing
Real.normedCommRing
NormedField.toNormedSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
smoothingFn
Real.instInv
β€”Filter.univ_mem'
deriv_smoothingFn
neg_div
div_eq_mul_inv
neg_inv
neg_mul
Asymptotics.IsLittleO.inv_rev
Asymptotics.IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_neg_right
Asymptotics.isBigO_refl
Asymptotics.isLittleO_one_left_iff
NormedDivisionRing.to_normOneClass
Filter.Tendsto.comp
tendsto_norm_atTop_atTop
Filter.tendsto_pow_atTop
Real.instIsOrderedRing
Mathlib.Meta.NormNum.isNat_eq_false
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
Real.tendsto_log_atTop
Filter.Eventually.of_forall
mul_one
neg_zero
Real.log_zero
zero_pow
Nat.instAtLeastTwoHAddOfNat
MulZeroClass.mul_zero
isLittleO_self_div_log_id πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Nat.instPreorder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instNatCast
Monoid.toNatPow
Real.instMonoid
Real.log
β€”div_eq_mul_inv
Asymptotics.IsBigO.mul_isLittleO
NormedDivisionRing.toNormMulClass
Asymptotics.isBigO_refl
Asymptotics.IsLittleO.inv_rev
one_pow
Asymptotics.IsLittleO.pow
Asymptotics.IsLittleO.natCast_atTop
Real.instIsStrictOrderedRing
Real.instArchimedean
Real.isLittleO_const_log_atTop
Mathlib.Meta.NormNum.isNat_lt_true
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
Nat.instCharZero
Mathlib.Meta.NormNum.isNat_ofNat
NeZero.charZero_one
RCLike.charZero_rclike
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
Nat.instAtLeastTwoHAddOfNat
instIsEmptyFalse
instIsDirectedOrder
instArchimedeanNat
inv_one
mul_one
isLittleO_smoothingFn_one πŸ“–mathematicalβ€”Asymptotics.IsLittleO
Real
Real.norm
Filter.atTop
Real.instPreorder
smoothingFn
Real.instOne
β€”Asymptotics.isLittleO_of_tendsto
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
one_div
div_one
Filter.Tendsto.inv_tendsto_atTop
Real.instIsStrictOrderedRing
instOrderTopologyReal
Real.tendsto_log_atTop
isTheta_smoothingFn_sub_self πŸ“–mathematicalβ€”Asymptotics.IsTheta
Real
Real.norm
Filter.atTop
Nat.instPreorder
Real.instSub
smoothingFn
Real.instMul
Real.instNatCast
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
Monoid.toNatPow
Real.instMonoid
Real.log
β€”Asymptotics.IsEquivalent.isTheta
isEquivalent_smoothingFn_sub_self
mul_one
neg_ne_zero
Real.log_ne_zero_of_pos_of_ne_one
b_pos
ne_of_lt
b_lt_one
Asymptotics.isTheta_const_mul_right
Asymptotics.isTheta_refl
max_bi_le πŸ“–mathematicalβ€”Real
Real.instLE
max_bi
β€”Finite.exists_max
min_bi_le πŸ“–mathematicalβ€”Real
Real.instLE
min_bi
β€”Finite.exists_min
nβ‚€_gt_zero πŸ“–mathematicalβ€”nβ‚€β€”β€”
one_add_smoothingFn_le_two πŸ“–mathematicalReal
Real.instLE
Real.exp
Real.instOne
Real.instAdd
smoothingFn
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.exp_zero
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
div_le_one
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.log_pos
Real.log_exp
Real.log_le_log
Real.exp_pos
one_mem_range_sumCoeffsExp πŸ“–mathematicalβ€”Real
Set
Set.instMembership
Set.range
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
Real.instOne
β€”mem_range_of_exists_le_of_exists_ge
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
ConnectedSpace.toPreconnectedSpace
PathConnectedSpace.connectedSpace
Real.instPathConnectedSpace
continuous_sumCoeffsExp
Filter.Eventually.exists
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
Filter.Tendsto.eventually_le_const
instClosedIciTopology
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
RCLike.charZero_rclike
tendsto_zero_sumCoeffsExp
Filter.atBot_neBot
instIsCodirectedOrder
Filter.Tendsto.eventually_ge_atTop
tendsto_atTop_sumCoeffsExp
p_def πŸ“–mathematicalβ€”p
Function.invFun
Real
Real.instInhabited
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
Real.instOne
β€”β€”
r_lt_n πŸ“–β€”nβ‚€β€”β€”β€”
strictAntiOn_one_add_smoothingFn πŸ“–mathematicalβ€”StrictAntiOn
Real
Real.instPreorder
Real.instAdd
Real.instOne
smoothingFn
Set.Ioi
β€”StrictAntiOn.const_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
strictAntiOn_smoothingFn
strictAntiOn_smoothingFn πŸ“–mathematicalβ€”StrictAntiOn
Real
Real.instPreorder
smoothingFn
Set.Ioi
Real.instOne
β€”one_div
StrictAntiOn.comp_strictMonoOn
inv_strictAntiOn
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
StrictMonoOn.mono
Real.strictMonoOn_log
Set.Ioi_subset_Ioi
zero_le_one
Real.instZeroLEOneClass
Real.log_pos
strictAnti_sumCoeffsExp πŸ“–mathematicalβ€”StrictAnti
Real
Real.instPreorder
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
β€”Finset.sum_fn
Finset.sum_induction_nonempty
StrictAnti.add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
Finset.univ_nonempty
StrictAnti.const_mul
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.strictAnti_rpow_of_base_lt_one
b_pos
b_lt_one
a_pos
strictMonoOn_one_sub_smoothingFn πŸ“–mathematicalβ€”StrictMonoOn
Real
Real.instPreorder
Real.instSub
Real.instOne
smoothingFn
Set.Ioi
β€”sub_eq_add_neg
StrictMonoOn.const_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
StrictAntiOn.neg
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
strictAntiOn_smoothingFn
sumCoeffsExp_p_eq_one πŸ“–mathematicalβ€”Finset.sum
Real
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
p
Real.instOne
β€”Finset.sum_congr
p_def
Function.invFun_eq
Set.mem_range
one_mem_range_sumCoeffsExp
sumTransform_def πŸ“–mathematicalβ€”sumTransform
Real
Real.instMul
Real.instPow
Real.instNatCast
Finset.sum
Real.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instAdd
Real.instOne
β€”β€”
tendsto_atTop_r πŸ“–mathematicalβ€”Filter.Tendsto
Filter.atTop
Nat.instPreorder
β€”Filter.tendsto_atTop
eventually_r_ge
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
RCLike.charZero_rclike
Filter.eventually_all
Finite.of_fintype
tendsto_atTop_r_real πŸ“–mathematicalβ€”Filter.Tendsto
Real
Real.instNatCast
Filter.atTop
Nat.instPreorder
Real.instPreorder
β€”Filter.Tendsto.comp
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
tendsto_atTop_r
tendsto_atTop_sumCoeffsExp πŸ“–mathematicalβ€”Filter.Tendsto
Real
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
Filter.atBot
Real.instPreorder
Filter.atTop
β€”Finite.of_fintype
Filter.Tendsto.const_mul_atTop
Real.instIsStrictOrderedRing
a_pos
tendsto_rpow_atBot_of_base_lt_one
b_pos
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.sub_neg_of_lt
Real.instIsOrderedRing
Mathlib.Tactic.Linarith.sub_nonpos_of_le
b_lt_one
Filter.tendsto_atTop_mono
Finset.single_le_sum
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
le_of_lt
mul_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.rpow_pos_of_pos
Finset.mem_univ
tendsto_zero_sumCoeffsExp πŸ“–mathematicalβ€”Filter.Tendsto
Real
Finset.sum
Real.instAddCommMonoid
Finset.univ
Real.instMul
Real.instPow
Filter.atTop
Real.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
β€”Finset.sum_const_zero
tendsto_finset_sum
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
MulZeroClass.mul_zero
Filter.Tendsto.mul
IsTopologicalSemiring.toContinuousMul
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
Filter.atTop_neBot
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
tendsto_rpow_atTop_of_base_lt_one
b_pos
lt_of_not_ge
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Real.instIsStrictOrderedRing
Mathlib.Tactic.Linarith.add_neg
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_neg_of_lt
Mathlib.Tactic.Linarith.sub_nonpos_of_le
b_lt_one

(root)

Definitions

NameCategoryTheorems
AkraBazziRecurrence πŸ“–CompDataβ€”

---

← Back to Index