Documentation Verification Report

EpsilonNFA

📁 Source: Mathlib/Computability/EpsilonNFA.lean

Statistics

MetricCount
DefinitionstoεNFA, εNFA, IsPath, accept, accepts, eval, evalFrom, instInhabited, instOne, instZero, start, step, stepSet, toNFA, εClosure
15
TheoremstoεNFA_correct, toεNFA_evalFrom_match, toεNFA_εClosure, eq_of_nil, singleton, accept_one, accept_zero, evalFrom_append_singleton, evalFrom_empty, evalFrom_nil, evalFrom_singleton, eval_append_singleton, eval_nil, eval_singleton, isPath_append, isPath_iff, isPath_nil, isPath_singleton, mem_accepts_iff_exists_path, mem_evalFrom_iff_exists, mem_evalFrom_iff_exists_path, mem_stepSet_iff, mem_εClosure_iff_exists, mem_εClosure_iff_exists_path, pumping_lemma, start_one, start_zero, stepSet_empty, step_one, step_zero, subset_εClosure, toNFA_correct, toNFA_evalFrom_match, εClosure_empty, εClosure_univ
35
Total50

NFA

Definitions

NameCategoryTheorems
toεNFA 📖CompOp
3 mathmath: toεNFA_correct, toεNFA_evalFrom_match, toεNFA_εClosure

Theorems

NameKindAssumesProvesValidatesDepends On
toεNFA_correct 📖mathematicalεNFA.accepts
toεNFA
accepts
εNFA.accepts.eq_1
εNFA.eval.eq_1
toεNFA_evalFrom_match
toεNFA_evalFrom_match 📖mathematicalεNFA.evalFrom
toεNFA
evalFrom
evalFrom.eq_1
εNFA.evalFrom.eq_1
toεNFA_εClosure
Set.ext
toεNFA_εClosure 📖mathematicalεNFA.εClosure
toεNFA
Set.ext

(root)

Definitions

NameCategoryTheorems
εNFA 📖CompData
6 mathmath: εNFA.accept_one, εNFA.step_zero, εNFA.accept_zero, εNFA.step_one, εNFA.start_zero, εNFA.start_one

εNFA

Definitions

NameCategoryTheorems
IsPath 📖CompData
8 mathmath: isPath_singleton, mem_εClosure_iff_exists_path, mem_evalFrom_iff_exists_path, IsPath.singleton, mem_accepts_iff_exists_path, isPath_iff, isPath_append, isPath_nil
accept 📖CompOp
3 mathmath: accept_one, accept_zero, mem_accepts_iff_exists_path
accepts 📖CompOp
3 mathmath: toNFA_correct, mem_accepts_iff_exists_path, NFA.toεNFA_correct
eval 📖CompOp
3 mathmath: eval_singleton, eval_nil, eval_append_singleton
evalFrom 📖CompOp
8 mathmath: mem_evalFrom_iff_exists_path, evalFrom_append_singleton, evalFrom_singleton, toNFA_evalFrom_match, mem_evalFrom_iff_exists, NFA.toεNFA_evalFrom_match, evalFrom_nil, evalFrom_empty
instInhabited 📖CompOp
instOne 📖CompOp
3 mathmath: accept_one, step_one, start_one
instZero 📖CompOp
3 mathmath: step_zero, accept_zero, start_zero
start 📖CompOp
5 mathmath: eval_singleton, eval_nil, mem_accepts_iff_exists_path, start_zero, start_one
step 📖CompOp
5 mathmath: isPath_singleton, step_zero, isPath_iff, step_one, mem_stepSet_iff
stepSet 📖CompOp
6 mathmath: eval_singleton, evalFrom_append_singleton, evalFrom_singleton, stepSet_empty, mem_stepSet_iff, eval_append_singleton
toNFA 📖CompOp
2 mathmath: toNFA_correct, toNFA_evalFrom_match
εClosure 📖CompData
12 mathmath: subset_εClosure, mem_εClosure_iff_exists_path, eval_singleton, eval_nil, evalFrom_singleton, toNFA_evalFrom_match, mem_εClosure_iff_exists, NFA.toεNFA_εClosure, εClosure_empty, evalFrom_nil, εClosure_univ, mem_stepSet_iff

Theorems

NameKindAssumesProvesValidatesDepends On
accept_one 📖mathematicalaccept
εNFA
instOne
Set.univ
accept_zero 📖mathematicalaccept
εNFA
instZero
Set
Set.instEmptyCollection
evalFrom_append_singleton 📖mathematicalevalFrom
stepSet
evalFrom.eq_1
evalFrom_empty 📖mathematicalevalFrom
Set
Set.instEmptyCollection
evalFrom_nil
εClosure_empty
evalFrom_append_singleton
stepSet_empty
evalFrom_nil 📖mathematicalevalFrom
εClosure
evalFrom_singleton 📖mathematicalevalFrom
stepSet
εClosure
eval_append_singleton 📖mathematicaleval
stepSet
evalFrom_append_singleton
eval_nil 📖mathematicaleval
εClosure
start
eval_singleton 📖mathematicaleval
stepSet
εClosure
start
isPath_append 📖mathematicalIsPath
isPath_iff 📖mathematicalIsPath
Set
Set.instMembership
step
isPath_nil 📖mathematicalIsPathisPath_iff
isPath_singleton 📖mathematicalIsPath
Set
Set.instMembership
step
mem_accepts_iff_exists_path 📖mathematicalLanguage
Language.instMembershipList
accepts
Set
Set.instMembership
start
accept
IsPath
mem_evalFrom_iff_exists
eval.eq_1
mem_evalFrom_iff_exists_path
mem_evalFrom_iff_exists 📖mathematicalSet
Set.instMembership
evalFrom
Set.instSingletonSet
mem_εClosure_iff_exists
evalFrom_append_singleton
mem_evalFrom_iff_exists_path 📖mathematicalSet
Set.instMembership
evalFrom
Set.instSingletonSet
IsPath
evalFrom_nil
mem_εClosure_iff_exists_path
List.reduceOption_replicate_none
evalFrom_append_singleton
mem_stepSet_iff
mem_εClosure_iff_exists
List.reduceOption_append
List.reduceOption_cons_of_some
isPath_append
mem_stepSet_iff 📖mathematicalSet
Set.instMembership
stepSet
εClosure
step
mem_εClosure_iff_exists 📖mathematicalSet
Set.instMembership
εClosure
Set.instSingletonSet
mem_εClosure_iff_exists_path 📖mathematicalSet
Set.instMembership
εClosure
Set.instSingletonSet
IsPath
List.replicate_add
isPath_append
IsPath.eq_of_nil
pumping_lemma 📖mathematicalLanguage
Language.instMembershipList
accepts
Fintype.card
Set
Set.fintype
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Language.instCompleteAtomicBooleanAlgebra
Language.instMul
Language.instSingletonList
KStar.kstar
Language.instKStar
NFA.pumping_lemma
start_one 📖mathematicalstart
εNFA
instOne
Set.univ
start_zero 📖mathematicalstart
εNFA
instZero
Set
Set.instEmptyCollection
stepSet_empty 📖mathematicalstepSet
Set
Set.instEmptyCollection
Set.iUnion_congr_Prop
Set.iUnion_false
Set.iUnion_empty
step_one 📖mathematicalstep
εNFA
instOne
Set
Set.instEmptyCollection
step_zero 📖mathematicalstep
εNFA
instZero
Set
Set.instEmptyCollection
subset_εClosure 📖mathematicalSet
Set.instHasSubset
εClosure
toNFA_correct 📖mathematicalNFA.accepts
toNFA
accepts
toNFA_evalFrom_match 📖mathematicalNFA.evalFrom
toNFA
εClosure
evalFrom
εClosure_empty 📖mathematicalεClosure
Set
Set.instEmptyCollection
Set.eq_empty_of_forall_notMem
εClosure_univ 📖mathematicalεClosure
Set.univ
Set.eq_univ_of_univ_subset
subset_εClosure

εNFA.IsPath

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_nil 📖εNFA.IsPathεNFA.isPath_nil
singleton 📖mathematicalSet
Set.instMembership
εNFA.step
εNFA.IsPathεNFA.isPath_singleton

---

← Back to Index