Documentation Verification Report

NFA

πŸ“ Source: Mathlib/Computability/NFA.lean

Statistics

MetricCount
DefinitionstoNFA, NFA, supp, accept, accepts, acceptsFrom, eval, evalFrom, instInhabited, reverse, start, step, stepSet, toDFA
14
TheoremstoNFA_accept, toNFA_correct, toNFA_evalFrom_match, toNFA_start, toNFA_step, of_reverse, reverse, isRegular_reverse_iff, acceptsFrom_iUnion, acceptsFrom_iUnionβ‚‚, acceptsFrom_union, accepts_eq_acceptsFrom_start, accepts_iff_exists_path, append_mem_acceptsFrom, append_preimage_acceptsFrom, cons_mem_acceptsFrom, cons_preimage_acceptsFrom, disjoint_evalFrom_reverse, disjoint_evalFrom_reverse_iff, disjoint_stepSet_reverse, evalFrom_append, evalFrom_append_singleton, evalFrom_biUnion, evalFrom_cons, evalFrom_eq_biUnion_singleton, evalFrom_iUnion, evalFrom_iUnionβ‚‚, evalFrom_nil, evalFrom_singleton, evalFrom_union, eval_append_singleton, eval_nil, eval_singleton, mem_accepts, mem_acceptsFrom, mem_accepts_reverse, mem_evalFrom_iff_exists, mem_evalFrom_iff_nonempty_path, mem_stepSet, nil_mem_acceptsFrom, pumping_lemma, reverse_accept, reverse_reverse, reverse_start, reverse_step, stepSet_empty, stepSet_singleton, stepSet_union, toDFA_correct
49
Total63

DFA

Definitions

NameCategoryTheorems
toNFA πŸ“–CompOp
5 mathmath: toNFA_start, toNFA_correct, toNFA_step, toNFA_evalFrom_match, toNFA_accept

Theorems

NameKindAssumesProvesValidatesDepends On
toNFA_accept πŸ“–mathematicalβ€”NFA.accept
toNFA
accept
β€”β€”
toNFA_correct πŸ“–mathematicalβ€”NFA.accepts
toNFA
accepts
β€”Language.ext
NFA.mem_accepts
toNFA_start
toNFA_evalFrom_match
Set.mem_singleton_iff
toNFA_evalFrom_match πŸ“–mathematicalβ€”NFA.evalFrom
toNFA
Set
Set.instSingletonSet
evalFrom
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
toNFA_start πŸ“–mathematicalβ€”NFA.start
toNFA
Set
Set.instSingletonSet
start
β€”β€”
toNFA_step πŸ“–mathematicalβ€”NFA.step
toNFA
Set
Set.instSingletonSet
step
β€”β€”

Language

Theorems

NameKindAssumesProvesValidatesDepends On
isRegular_reverse_iff πŸ“–mathematicalβ€”IsRegular
reverse
β€”IsRegular.of_reverse
IsRegular.reverse

Language.IsRegular

Theorems

NameKindAssumesProvesValidatesDepends On
of_reverse πŸ“–β€”Language.IsRegular
Language.reverse
β€”β€”reverse
Language.reverse_reverse
reverse πŸ“–mathematicalLanguage.IsRegularLanguage.reverseβ€”Language.ext
NFA.toDFA_correct
DFA.toNFA_correct

NFA

Definitions

NameCategoryTheorems
accept πŸ“–CompOp
7 mathmath: reverse_start, accepts_iff_exists_path, DFA.toNFA_accept, nil_mem_acceptsFrom, mem_acceptsFrom, mem_accepts, reverse_accept
accepts πŸ“–CompOp
8 mathmath: Ξ΅NFA.toNFA_correct, DFA.toNFA_correct, accepts_iff_exists_path, toDFA_correct, toΞ΅NFA_correct, accepts_eq_acceptsFrom_start, mem_accepts_reverse, mem_accepts
acceptsFrom πŸ“–CompOp
10 mathmath: acceptsFrom_union, cons_preimage_acceptsFrom, acceptsFrom_iUnionβ‚‚, cons_mem_acceptsFrom, nil_mem_acceptsFrom, mem_acceptsFrom, accepts_eq_acceptsFrom_start, append_mem_acceptsFrom, acceptsFrom_iUnion, append_preimage_acceptsFrom
eval πŸ“–CompOp
3 mathmath: eval_singleton, eval_append_singleton, eval_nil
evalFrom πŸ“–CompOp
20 mathmath: evalFrom_append, evalFrom_iUnionβ‚‚, evalFrom_eq_biUnion_singleton, evalFrom_cons, DFA.toNFA_evalFrom_match, disjoint_evalFrom_reverse_iff, mem_evalFrom_iff_exists, mem_acceptsFrom, evalFrom_nil, Ξ΅NFA.toNFA_evalFrom_match, evalFrom_append_singleton, mem_accepts, evalFrom_union, evalFrom_singleton, append_mem_acceptsFrom, toΞ΅NFA_evalFrom_match, evalFrom_iUnion, evalFrom_biUnion, mem_evalFrom_iff_nonempty_path, append_preimage_acceptsFrom
instInhabited πŸ“–CompOpβ€”
reverse πŸ“–CompOp
7 mathmath: reverse_step, reverse_start, reverse_reverse, disjoint_evalFrom_reverse_iff, mem_accepts_reverse, disjoint_stepSet_reverse, reverse_accept
start πŸ“–CompOp
8 mathmath: eval_singleton, DFA.toNFA_start, reverse_start, accepts_iff_exists_path, eval_nil, accepts_eq_acceptsFrom_start, mem_accepts, reverse_accept
step πŸ“–CompOp
4 mathmath: reverse_step, DFA.toNFA_step, stepSet_singleton, mem_stepSet
stepSet πŸ“–CompOp
12 mathmath: stepSet_union, eval_singleton, eval_append_singleton, cons_preimage_acceptsFrom, evalFrom_cons, cons_mem_acceptsFrom, evalFrom_append_singleton, evalFrom_singleton, disjoint_stepSet_reverse, stepSet_empty, stepSet_singleton, mem_stepSet
toDFA πŸ“–CompOp
1 mathmath: toDFA_correct

Theorems

NameKindAssumesProvesValidatesDepends On
acceptsFrom_iUnion πŸ“–mathematicalβ€”acceptsFrom
Set.iUnion
β€”Language.ext
evalFrom_iUnion
Set.mem_iUnion
Set.mem_setOf_eq
acceptsFrom_iUnionβ‚‚ πŸ“–mathematicalβ€”acceptsFrom
Set.iUnion
β€”acceptsFrom_iUnion
acceptsFrom_union πŸ“–mathematicalβ€”acceptsFrom
Set
Set.instUnion
Language
Language.instAdd
β€”Language.add_def
Language.ext
evalFrom_union
accepts_eq_acceptsFrom_start πŸ“–mathematicalβ€”accepts
acceptsFrom
start
β€”β€”
accepts_iff_exists_path πŸ“–mathematicalβ€”Language
Language.instMembershipList
accepts
Set
Set.instMembership
start
accept
Path
β€”mem_evalFrom_iff_exists
append_mem_acceptsFrom πŸ“–mathematicalβ€”Language
Language.instMembershipList
acceptsFrom
evalFrom
β€”evalFrom_append
append_preimage_acceptsFrom πŸ“–mathematicalβ€”Set.preimage
acceptsFrom
evalFrom
β€”Set.ext
append_mem_acceptsFrom
cons_mem_acceptsFrom πŸ“–mathematicalβ€”Language
Language.instMembershipList
acceptsFrom
stepSet
β€”β€”
cons_preimage_acceptsFrom πŸ“–mathematicalβ€”Set.preimage
acceptsFrom
stepSet
β€”Set.ext
cons_mem_acceptsFrom
disjoint_evalFrom_reverse πŸ“–β€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
evalFrom
reverse
β€”β€”disjoint_comm
disjoint_stepSet_reverse
disjoint_evalFrom_reverse_iff πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
evalFrom
reverse
β€”disjoint_evalFrom_reverse
disjoint_stepSet_reverse πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
stepSet
reverse
β€”not_iff_not
evalFrom_append πŸ“–mathematicalβ€”evalFromβ€”β€”
evalFrom_append_singleton πŸ“–mathematicalβ€”evalFrom
stepSet
β€”evalFrom_append
evalFrom_biUnion πŸ“–mathematicalβ€”evalFrom
Set.iUnion
Set
Set.instMembership
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
evalFrom_iUnion
evalFrom_cons πŸ“–mathematicalβ€”evalFrom
stepSet
β€”β€”
evalFrom_eq_biUnion_singleton πŸ“–mathematicalβ€”evalFrom
Set.iUnion
Set
Set.instMembership
Set.instSingletonSet
β€”Set.biUnion_of_singleton
evalFrom_iUnion πŸ“–mathematicalβ€”evalFrom
Set.iUnion
β€”Set.iUnion_congr_Prop
Set.iUnion_exists
Set.iUnion_comm
evalFrom_iUnionβ‚‚ πŸ“–mathematicalβ€”evalFrom
Set.iUnion
β€”evalFrom_iUnion
evalFrom_nil πŸ“–mathematicalβ€”evalFromβ€”β€”
evalFrom_singleton πŸ“–mathematicalβ€”evalFrom
stepSet
β€”β€”
evalFrom_union πŸ“–mathematicalβ€”evalFrom
Set
Set.instUnion
β€”stepSet_union
eval_append_singleton πŸ“–mathematicalβ€”eval
stepSet
β€”evalFrom_append
eval_nil πŸ“–mathematicalβ€”eval
start
β€”β€”
eval_singleton πŸ“–mathematicalβ€”eval
stepSet
start
β€”β€”
mem_accepts πŸ“–mathematicalβ€”Language
Language.instMembershipList
accepts
Set
Set.instMembership
accept
evalFrom
start
β€”β€”
mem_acceptsFrom πŸ“–mathematicalβ€”Language
Language.instMembershipList
acceptsFrom
Set
Set.instMembership
accept
evalFrom
β€”β€”
mem_accepts_reverse πŸ“–mathematicalβ€”Language
Language.instMembershipList
accepts
reverse
β€”β€”
mem_evalFrom_iff_exists πŸ“–mathematicalβ€”Set
Set.instMembership
evalFrom
Set.instSingletonSet
β€”evalFrom_eq_biUnion_singleton
mem_evalFrom_iff_nonempty_path πŸ“–mathematicalβ€”Set
Set.instMembership
evalFrom
Set.instSingletonSet
Path
β€”stepSet_singleton
mem_evalFrom_iff_exists
evalFrom_cons
mem_stepSet πŸ“–mathematicalβ€”Set
Set.instMembership
stepSet
step
β€”β€”
nil_mem_acceptsFrom πŸ“–mathematicalβ€”Language
Language.instMembershipList
acceptsFrom
Set
Set.instMembership
accept
β€”β€”
pumping_lemma πŸ“–mathematicalLanguage
Language.instMembershipList
accepts
Fintype.card
Set
Set.fintype
Preorder.toLE
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Language.instCompleteAtomicBooleanAlgebra
Language.instMul
Language.instSingletonList
KStar.kstar
Language.instKStar
β€”toDFA_correct
DFA.pumping_lemma
reverse_accept πŸ“–mathematicalβ€”accept
reverse
start
β€”β€”
reverse_reverse πŸ“–mathematicalβ€”reverseβ€”β€”
reverse_start πŸ“–mathematicalβ€”start
reverse
accept
β€”β€”
reverse_step πŸ“–mathematicalβ€”step
reverse
setOf
Set
Set.instMembership
β€”β€”
stepSet_empty πŸ“–mathematicalβ€”stepSet
Set
Set.instEmptyCollection
β€”Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
stepSet_singleton πŸ“–mathematicalβ€”stepSet
Set
Set.instSingletonSet
step
β€”Set.iUnion_congr_Prop
Set.iUnion_iUnion_eq_left
stepSet_union πŸ“–mathematicalβ€”stepSet
Set
Set.instUnion
β€”Set.ext
toDFA_correct πŸ“–mathematicalβ€”DFA.accepts
Set
toDFA
accepts
β€”Language.ext
mem_accepts
DFA.mem_accepts

NFA.Path

Definitions

NameCategoryTheorems
supp πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
NFA πŸ“–CompDataβ€”

---

← Back to Index