Documentation Verification Report

Partrec

šŸ“ Source: Mathlib/Computability/Partrec.lean

Statistics

MetricCount
DefinitionsComputable, Computableā‚‚, Partrec, rfind, rfindOpt, rfindX, Partrec, Partrecā‚‚
8
Theoremsbind_decode_iff, comp, compā‚‚, cond, const, decode, encode, encode_iff, fin_app, fst, id, list_append, list_concat, list_cons, list_getElem?, list_length, list_ofFn, list_reverse, map_decode_iff, nat_bodd, nat_casesOn, nat_div2, nat_rec, nat_strong_rec, ofNat, ofOption, of_eq, option_bind, option_casesOn, option_getD, option_map, option_some, option_some_iff, pair, partrec, pred, snd, subtype_mk, succ, sumCasesOn, sumInl, sumInr, toā‚‚, unpair, vector_cons, vector_get, vector_head, vector_length, vector_ofFn, vector_ofFn', vector_tail, vector_toList, comp, compā‚‚, mk, partrecā‚‚, const', none, of_eq, of_eq_tot, of_primrec, ppred, prec', some, mem_rfind, rfindOpt_dom, rfindOpt_mono, rfindOpt_spec, rfind_dom, rfind_dom', rfind_min, rfind_min', rfind_spec, rfind_zero_none, bind, bind_decodeā‚‚_iff, comp, const', fix, fix_aux, map, map_encode_iff, nat_casesOn_right, nat_iff, nat_rec, none, of_eq, of_eq_tot, optionCasesOn_right, option_some_iff, rfind, rfindOpt, some, sumCasesOn_left, sumCasesOn_right, toā‚‚, vector_mOfFn, comp, compā‚‚, unpaired, unpaired', to_comp, to_comp, mOfFn_part_some
104
Total112

Computable

Theorems

NameKindAssumesProvesValidatesDepends On
bind_decode_iff šŸ“–mathematical—Computableā‚‚
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.option
Encodable.decode
Primcodable.toEncodable
—Nat.Partrec.of_eq
Partrec.bind
Partrec.comp
Partrec.nat_iff
Nat.Partrec.ppred
Primcodable.prim
snd
Computableā‚‚.partrecā‚‚
toā‚‚
comp
fst
Encodable.decode_prod_val
Option.bind_congr'
Part.bind_some
Part.map_bind
Part.map_some
Part.bind_none
Partrec.nat_casesOn_right
Primrec.to_comp
Primrec.encdec
const
Partrec.map
ofOption
decode
Computableā‚‚.comp
Partrec.of_eq
Encodable.encodek
comp šŸ“–ā€”Computable——Partrec.comp
compā‚‚ šŸ“–ā€”Computable
Computableā‚‚
——comp
cond šŸ“–ā€”Computable
Primcodable.bool
——of_eq
encode_iff
toā‚‚
comp
fst
const šŸ“–mathematical—Computable—Primrec.to_comp
Primrec.const
decode šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.option
Encodable.decode
Primcodable.toEncodable
—Primrec.to_comp
Primrec.decode
encode šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Encodable.encode
Primcodable.toEncodable
—Primrec.to_comp
Primrec.encode
encode_iff šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Encodable.encode
Primcodable.toEncodable
——
fin_app šŸ“–mathematical—Computableā‚‚
Primcodable.finArrow
Primcodable.fin
—Primrecā‚‚.to_comp
Primrec.fin_app
fst šŸ“–mathematical—Computable
Primcodable.prod
—Primrec.to_comp
Primrec.fst
id šŸ“–mathematical—Computable—Primrec.to_comp
Primrec.id
list_append šŸ“–mathematical—Computableā‚‚
Primcodable.list
—Primrecā‚‚.to_comp
Primrec.list_append
list_concat šŸ“–mathematical—Computableā‚‚
Primcodable.list
—Primrecā‚‚.to_comp
Primrec.list_concat
list_cons šŸ“–mathematical—Computableā‚‚
Primcodable.list
—Primrecā‚‚.to_comp
Primrec.list_cons
list_getElem? šŸ“–mathematical—Computableā‚‚
Primcodable.list
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.option
—Primrecā‚‚.to_comp
Primrec.list_getElem?
list_length šŸ“–mathematical—Computable
Primcodable.list
Primcodable.ofDenumerable
Denumerable.nat
—Primrec.to_comp
Primrec.list_length
list_ofFn šŸ“–mathematicalComputablePrimcodable.list—const
Computableā‚‚.comp
list_cons
list_reverse šŸ“–mathematical—Computable
Primcodable.list
—Primrec.to_comp
Primrec.list_reverse
map_decode_iff šŸ“–mathematical—Computableā‚‚
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.option
Encodable.decode
Primcodable.toEncodable
—bind_decode_iff
option_some_iff
nat_bodd šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.bool
Nat.bodd
—Primrec.to_comp
Primrec.nat_bodd
nat_casesOn šŸ“–ā€”Computable
Primcodable.ofDenumerable
Denumerable.nat
Computableā‚‚
——toā‚‚
Computableā‚‚.comp
fst
comp
snd
nat_div2 šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Nat.div2
—Primrec.to_comp
Primrec.nat_div2
nat_rec šŸ“–ā€”Computable
Primcodable.ofDenumerable
Denumerable.nat
Computableā‚‚
Primcodable.prod
——Partrec.of_eq
Computableā‚‚.partrecā‚‚
Part.bind_some
nat_strong_rec šŸ“–mathematicalComputableā‚‚
Primcodable.list
Primcodable.option
Primcodable.ofDenumerable
Denumerable.nat
—option_some_iff
of_eq
snd
const
toā‚‚
option_bind
comp
option_map
Computableā‚‚.comp
fst
list_concat
Option.bind_congr'
list_getElem?
succ
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
contravariant_lt_of_covariant_le
Nat.instZeroLEOneClass
ofNat šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Denumerable.ofNat
—Primrec.to_comp
Primrec.ofNat
ofOption šŸ“–mathematicalComputable
Primcodable.option
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Nat.Partrec.of_eq
Nat.Partrec.ppred
Part.map_some
Part.bind_none
Part.bind_some
Part.map_none
of_eq šŸ“–ā€”Computable———
option_bind šŸ“–ā€”Computable
Primcodable.option
Computableā‚‚
——of_eq
const
option_casesOn šŸ“–ā€”Computable
Primcodable.option
Computableā‚‚
——option_some_iff
of_eq
encode_iff
map_decode_iff
Encodable.encodek
option_getD šŸ“–ā€”Computable
Primcodable.option
——of_eq
snd
option_map šŸ“–ā€”Computable
Primcodable.option
Computableā‚‚
——option_bind
compā‚‚
option_some
option_some šŸ“–mathematical—Computable
Primcodable.option
—Primrec.to_comp
Primrec.option_some
option_some_iff šŸ“–mathematical—Computable
Primcodable.option
—encode_iff
comp
Primrec.to_comp
Primrec.pred
option_some
pair šŸ“–mathematicalComputablePrimcodable.prod—Nat.Partrec.of_eq
Part.map_some
Part.bind_none
Part.map_none
Part.bind_some
partrec šŸ“–mathematicalComputablePart.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
PFun.lift
——
pred šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
—Primrec.to_comp
Primrec.pred
snd šŸ“–mathematical—Computable
Primcodable.prod
—Primrec.to_comp
Primrec.snd
subtype_mk šŸ“–mathematicalPrimrecPred
Computable
Primcodable.subtype——
succ šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
—Primrec.to_comp
Primrec.succ
sumCasesOn šŸ“–ā€”Computable
Primcodable.sum
Computableā‚‚
——option_some_iff
of_eq
cond
comp
nat_bodd
encode_iff
option_map
decode
nat_div2
Nat.bodd_mul
Nat.bodd_succ
Nat.div2_val
mul_div_cancel_leftā‚€
Nat.instMulDivCancelClass
Nat.instCharZero
Nat.instAtLeastTwoHAddOfNat
Encodable.encodek
Nat.div2_succ
sumInl šŸ“–mathematical—Computable
Primcodable.sum
—Primrec.to_comp
Primrec.sumInl
sumInr šŸ“–mathematical—Computable
Primcodable.sum
—Primrec.to_comp
Primrec.sumInr
toā‚‚ šŸ“–mathematicalComputable
Primcodable.prod
Computable₂—of_eq
unpair šŸ“–mathematical—Computable
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.prod
Nat.unpair
—Primrec.to_comp
Primrec.unpair
vector_cons šŸ“–mathematical—Computableā‚‚
List.Vector
Primcodable.vector
List.Vector.cons
—Primrecā‚‚.to_comp
Primrec.vector_cons
vector_get šŸ“–mathematical—Computableā‚‚
List.Vector
Primcodable.vector
Primcodable.fin
List.Vector.get
—Primrecā‚‚.to_comp
Primrec.vector_get
vector_head šŸ“–mathematical—Computable
List.Vector
Primcodable.vector
List.Vector.head
—Primrec.to_comp
Primrec.vector_head
vector_length šŸ“–mathematical—Computable
List.Vector
Primcodable.vector
Primcodable.ofDenumerable
Denumerable.nat
List.Vector.length
—Primrec.to_comp
Primrec.vector_length
vector_ofFn šŸ“–mathematicalComputableList.Vector
Primcodable.vector
List.Vector.ofFn
—Partrec.of_eq
Partrec.vector_mOfFn
Vector.mOfFn_part_some
vector_ofFn' šŸ“–mathematical—Computable
List.Vector
Primcodable.finArrow
Primcodable.vector
List.Vector.ofFn
—Primrec.to_comp
Primrec.vector_ofFn'
vector_tail šŸ“–mathematical—Computable
List.Vector
Primcodable.vector
List.Vector.tail
—Primrec.to_comp
Primrec.vector_tail
vector_toList šŸ“–mathematical—Computable
List.Vector
Primcodable.vector
Primcodable.list
List.Vector.toList
—Primrec.to_comp
Primrec.vector_toList

Computableā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
comp šŸ“–ā€”Computableā‚‚
Computable
——Computable.comp
Computable.pair
compā‚‚ šŸ“–ā€”Computable₂——comp
mk šŸ“–mathematicalComputable
Primcodable.prod
Computable₂——
partrecā‚‚ šŸ“–mathematicalComputableā‚‚Partrecā‚‚
PFun.lift
——

Decidable.Partrec

Theorems

NameKindAssumesProvesValidatesDepends On
const' šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Partrec.of_eq
Computable.ofOption
Computable.const
Part.of_toOption

Nat

Definitions

NameCategoryTheorems
Partrec šŸ“–CompData—
rfind šŸ“–CompOp
6 mathmath: rfind_zero_none, rfind_dom, rfind_min', mem_rfind, Partrec.rfind', rfind_dom'
rfindOpt šŸ“–CompOp
4 mathmath: rfindOpt_dom, rfindOpt_mono, Partrec.Code.eval_eq_rfindOpt, Partrec'.rfindOpt
rfindX šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
mem_rfind šŸ“–mathematical—Part
Part.instMembership
rfind
—rfind_spec
rfind_min
Part.dom_iff_mem
rfind_dom
Exists.fst
lt_trichotomy
Part.mem_unique
rfindOpt_dom šŸ“–mathematical—Part.Dom
rfindOpt
—rfindOpt_spec
find_spec
rfind_spec
Part.get_mem
rfindOpt_mono šŸ“–mathematical—Part
Part.instMembership
rfindOpt
—rfindOpt_spec
rfindOpt_dom
le_max_left
le_max_right
rfindOpt_spec šŸ“–ā€”Part
Part.instMembership
rfindOpt
——Part.mem_bind_iff
Part.mem_coe
rfind_dom šŸ“–mathematical—Part.Dom
rfind
Part
Part.instMembership
——
rfind_dom' šŸ“–mathematical—Part.Dom
rfind
Part
Part.instMembership
—Decidable.eq_or_lt_of_le
Exists.fst
le_of_lt
rfind_min šŸ“–ā€”Part
Part.instMembership
rfind
——Exists.fst
Exists.snd
rfind_min' šŸ“–mathematical—Part
Part.instMembership
rfind
PFun.lift
—Part.dom_iff_mem
rfind_dom
not_lt
Part.mem_unique
rfind_min
rfind_spec šŸ“–ā€”Part
Part.instMembership
rfind
——Exists.fst
Exists.snd
rfind_zero_none šŸ“–mathematicalPart.nonerfind—Part.eq_none_iff
rfind_dom'
Exists.fst

Nat.Partrec

Theorems

NameKindAssumesProvesValidatesDepends On
none šŸ“–mathematical—Part.none—of_eq
Nat.Primrec.const
Part.eq_none_iff
Part.map_some
of_eq šŸ“–ā€”ā€”ā€”ā€”ā€”
of_eq_tot šŸ“–mathematicalPart
Part.instMembership
PFun.lift—of_eq
Part.eq_some_iff
of_primrec šŸ“–mathematical—PFun.lift—of_eq_tot
Part.map_some
Part.bind_some
ppred šŸ“–mathematical—Part.ofOption
Nat.ppred
—Primrec.toā‚‚
Primrec.ite
PrimrecRel.comp
Primrec.eq
Primrec.fst
Primrec.comp
Primrec.succ
Primrec.snd
Primrec.const
of_eq
Primrecā‚‚.unpaired'
Nat.unpair_pair
Part.map_some
Part.eq_none_iff
Part.eq_some_iff
prec' šŸ“–mathematical—Part.bind
Part
Part.instMonad
Nat.pair
—of_eq
some
Part.ext
Part.map_some
Part.bind_some
Part.bind_map
Nat.unpair_pair
some šŸ“–mathematical—Part.some—Nat.Primrec.id

Partrec

Theorems

NameKindAssumesProvesValidatesDepends On
bind šŸ“–ā€”Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Partrecā‚‚
——Nat.Partrec.of_eq
Nat.Partrec.some
Part.map_some
Part.map_bind
Part.bind_some
Encodable.decode_prod_val
Part.bind_none
Part.bind_map
Option.bind_congr'
Nat.unpair_pair
Encodable.encodek
bind_decodeā‚‚_iff šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Encodable.decodeā‚‚
—nat_iff
bind
Computable.ofOption
Primrec.to_comp
Primrec.decodeā‚‚
comp
map
Computable.toā‚‚
Computable.comp
Computable.encode
Computable.snd
map_encode_iff
Encodable.decodeā‚‚_encode
Part.bind_some
comp šŸ“–ā€”Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Computable
——Nat.Partrec.of_eq
Part.map_some
Part.bind_none
Part.bind_some
Encodable.encodek
const' šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Decidable.Partrec.const'
fix šŸ“–mathematicalPart.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Primcodable.sum
PFun.fix—Computable.snd
Computable.comp
Computable.sumInr
Computable.fst
toā‚‚
sumCasesOn_right
Computable.toā‚‚
comp
map
Computable.sumCasesOn
Computable.id
Computable.const
of_eq
bind
rfind
none
Part.ext
fix_aux
fix_aux šŸ“–mathematical—Part
Part.instMembership
PFun.fix
—PFun.mem_fix_iff
Part.mem_unique
le_antisymm
map šŸ“–ā€”Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Computableā‚‚
——Part.bind_some_eq_map
bind
map_encode_iff šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Primcodable.ofDenumerable
Denumerable.nat
——
nat_casesOn_right šŸ“–mathematicalComputable
Primcodable.ofDenumerable
Denumerable.nat
Partrecā‚‚
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—of_eq
toā‚‚
Partrecā‚‚.comp
Computable.fst
Computable.comp
Computable.pred
Nat.instCanonicallyOrderedAdd
add_tsub_cancel_right
Nat.instOrderedSub
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
IsOrderedAddMonoid.toAddLeftMono
Nat.instIsOrderedAddMonoid
Part.ext
Part.mem_bind_iff
Exists.fst
Exists.snd
nat_iff šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Primcodable.ofDenumerable
Denumerable.nat
Part.map
Encodable.encode
—Part.map_id'
Part.bind_some
nat_rec šŸ“–ā€”Computable
Primcodable.ofDenumerable
Denumerable.nat
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Partrecā‚‚
Primcodable.prod
——Nat.Partrec.of_eq
Nat.Partrec.prec'
Part.map_some
Part.bind_none
Encodable.decode_prod_val
Option.bind_congr'
Nat.unpair_pair
Part.bind_some
Part.map_bind
Part.bind_map
Encodable.encodek
none šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Nat.Partrec.of_eq
Nat.Partrec.none
Part.map_none
Part.bind_none
Part.bind_some
of_eq šŸ“–ā€”Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
———
of_eq_tot šŸ“–mathematicalPart.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Part
Part.instMembership
Computable—of_eq
Part.eq_some_iff
optionCasesOn_right šŸ“–mathematicalComputable
Primcodable.option
Partrecā‚‚
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—nat_casesOn_right
Computable.encode_iff
bind
Computable.ofOption
Computable.comp
Computable.decode
Computable.snd
toā‚‚
Partrecā‚‚.comp
Computable.fst
of_eq
Encodable.encodek
Part.bind_some
option_some_iff šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Primcodable.option
—Nat.Partrec.of_eq
Nat.Partrec.ppred
Part.bind_assoc
Part.bind_map
Part.bind_some_eq_map
map
Computable.toā‚‚
Computable.comp
Computable.option_some
Computable.snd
rfind šŸ“–mathematicalPartrecā‚‚
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.bool
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Nat.Partrec.of_eq
map
Primrecā‚‚.to_comp
Primrec.toā‚‚
Primrec.comp
Primrec.dom_bool
Primrec.snd
Encodable.decode_prod_val
Option.bind_congr'
Nat.unpair_pair
Part.map_id'
Part.bind_none
Part.map_none
Nat.rfind_zero_none
Part.bind_some
Part.map_map
rfindOpt šŸ“–mathematicalComputableā‚‚
Primcodable.ofDenumerable
Denumerable.nat
Primcodable.option
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—bind
rfind
toā‚‚
Computable.comp
Primrec.to_comp
Primrec.option_isSome
Computable.ofOption
some šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
Part.some
—Computable.id
sumCasesOn_left šŸ“–mathematicalComputable
Primcodable.sum
Partrecā‚‚
Computableā‚‚
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—of_eq
sumCasesOn_right
Computable.sumCasesOn
Computable.toā‚‚
Computable.comp
Computable.sumInr
Computable.snd
Computable.sumInl
sumCasesOn_right šŸ“–mathematicalComputable
Primcodable.sum
Computableā‚‚
Partrecā‚‚
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—optionCasesOn_right
Computable.sumCasesOn
Computable.toā‚‚
Computable.const
Computable.comp
Computable.option_some
Computable.snd
option_some_iff
of_eq
Part.map_some
toā‚‚ šŸ“–mathematicalPart.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Primcodable.prod
Part.map
Encodable.encode
Partrec₂—of_eq
vector_mOfFn šŸ“–mathematicalPart.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
List.Vector
Primcodable.vector
—Computable.const
bind
comp
Computable.fst
Computableā‚‚.comp
Primrecā‚‚.to_comp
Primrec.vector_cons
Computable.comp
Computable.snd

Partrecā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
comp šŸ“–mathematicalPartrecā‚‚
Computable
Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Part.map
Encodable.encode
—Partrec.comp
Computable.pair
compā‚‚ šŸ“–ā€”Partrecā‚‚
Computableā‚‚
——comp
unpaired šŸ“–mathematical—Part.bind
Part.ofOption
Encodable.decode
Primcodable.toEncodable
Primcodable.ofDenumerable
Denumerable.nat
Part.map
Encodable.encode
Nat.unpaired
Part
Partrecā‚‚
—Partrec.comp
Primrecā‚‚.to_comp
Primrecā‚‚.pair
Primrec.to_comp
Primrec.unpair
unpaired' šŸ“–mathematical—Nat.unpaired
Part
Partrecā‚‚
Primcodable.ofDenumerable
Denumerable.nat
—Partrec.nat_iff
unpaired

Primrec

Theorems

NameKindAssumesProvesValidatesDepends On
to_comp šŸ“–mathematicalEncodable.encode
Option.encodable
Primcodable.toEncodable
Encodable.decode
Computable—Nat.Partrec.of_eq
Nat.Partrec.ppred
Part.bind_some
Part.map_some
Part.bind_none

Primrecā‚‚

Theorems

NameKindAssumesProvesValidatesDepends On
to_comp šŸ“–mathematicalPrimrecā‚‚Computable₂—Primrec.to_comp

Vector

Theorems

NameKindAssumesProvesValidatesDepends On
mOfFn_part_some šŸ“–mathematical—List.Vector.mOfFn
Part
Part.instMonad
Part.some
List.Vector
List.Vector.ofFn
—List.Vector.mOfFn_pure
Part.instLawfulMonad

(root)

Definitions

NameCategoryTheorems
Computable šŸ“–MathDef
31 mathmath: ComputablePred.decide, Computable.encode_iff, computablePred_iff_computable_decide, Computable.list_reverse, Computable.encode, Computable.ofNat, Computable.decode, Primrec.to_comp, Computable.sumInr, Nat.Partrec.Code.instCountableSubtypeForallComputable, Computable.option_some_iff, Computable.snd, Computable.sumInl, Computable.vector_ofFn', Computable.unpair, Computable.vector_head, Computable.list_length, Nat.Partrec'.vec_iff, Computable.option_some, Computable.vector_toList, Computable.vector_length, Computable.succ, Computable.fst, Computable.nat_div2, Partrec.of_eq_tot, Computable.const, ComputablePred.computable_iff, Computable.pred, Computable.nat_bodd, Computable.vector_tail, Computable.id
Computableā‚‚ šŸ“–MathDef
14 mathmath: Computable.vector_cons, Computable.list_getElem?, Computable.list_cons, Computable.list_concat, Computableā‚‚.mk, Computable.bind_decode_iff, Computable.map_decode_iff, Computable.list_append, Nat.Partrec.Code.smn, Computable.vector_get, computableā‚‚_ack, Computable.toā‚‚, Primrecā‚‚.to_comp, Computable.fin_app
Partrec šŸ“–MathDef—
Partrecā‚‚ šŸ“–MathDef
6 mathmath: Computableā‚‚.partrecā‚‚, Partrecā‚‚.unpaired', Partrec.toā‚‚, Nat.Partrec.Code.eval_part, Nat.Partrec'.part_iffā‚‚, Partrecā‚‚.unpaired

---

← Back to Index