Documentation Verification Report

Reduce

πŸ“ Source: Mathlib/Computability/Reduce.lean

Statistics

MetricCount
DefinitionsComputable, ManyOneDegree, instAdd, instInhabited, instLE, instPartialOrder, instSemilatticeSup, liftOn, liftOnβ‚‚, of, ManyOneEquiv, ManyOneReducible, OneOneEquiv, OneOneReducible, toNat, Β«term_≀₀_Β», Β«term_≀₁_Β»
17
Theoremsequivβ‚‚, eqv, computable_of_manyOneReducible, computable_of_oneOneReducible, trans, add_le, add_of, ind_on, le_add_left, le_add_right, liftOn_eq, liftOnβ‚‚_eq, of_eq_of, of_le_of, congr_left, congr_right, le_congr_left, le_congr_right, of_equiv, trans, mk, trans, congr_left, congr_right, le_congr_left, le_congr_right, of_equiv, to_many_one, trans, disjoin_left, disjoin_right, mk, of_equiv, of_equiv_symm, to_many_one, trans, down_computable, disjoin_le, disjoin_manyOneReducible, equivalence_of_manyOneEquiv, equivalence_of_oneOneEquiv, manyOneEquiv_refl, manyOneEquiv_toNat, manyOneEquiv_up, manyOneReducible_refl, manyOneReducible_toNat, manyOneReducible_toNat_toNat, oneOneEquiv_refl, oneOneReducible_refl, reflexive_manyOneReducible, reflexive_oneOneReducible, toNat_manyOneEquiv, toNat_manyOneReducible, transitive_manyOneReducible, transitive_oneOneReducible
55
Total72

Computable

Theorems

NameKindAssumesProvesValidatesDepends On
equivβ‚‚ πŸ“–mathematicalβ€”Equiv.Computable
Primcodable.ofDenumerable
Denumerable.equivβ‚‚
β€”Equiv.Computable.trans
eqv
Equiv.Computable.symm
eqv πŸ“–mathematicalβ€”Equiv.Computable
Primcodable.ofDenumerable
Denumerable.nat
Denumerable.eqv
β€”encode
ofNat

ComputablePred

Theorems

NameKindAssumesProvesValidatesDepends On
computable_of_manyOneReducible πŸ“–β€”ManyOneReducible
ComputablePred
β€”β€”Set.ext
computable_iff
Computable.comp
computable_of_oneOneReducible πŸ“–β€”OneOneReducible
ComputablePred
β€”β€”computable_of_manyOneReducible
OneOneReducible.to_many_one

Equiv

Definitions

NameCategoryTheorems
Computable πŸ“–MathDef
3 mathmath: ULower.down_computable, Computable.eqv, Computable.equivβ‚‚

Equiv.Computable

Theorems

NameKindAssumesProvesValidatesDepends On
trans πŸ“–mathematicalEquiv.ComputableEquiv.transβ€”Computable.comp

ManyOneDegree

Definitions

NameCategoryTheorems
instAdd πŸ“–CompOp
4 mathmath: add_le, add_of, le_add_left, le_add_right
instInhabited πŸ“–CompOpβ€”
instLE πŸ“–CompOp
4 mathmath: add_le, le_add_left, of_le_of, le_add_right
instPartialOrder πŸ“–CompOpβ€”
instSemilatticeSup πŸ“–CompOpβ€”
liftOn πŸ“–CompOp
1 mathmath: liftOn_eq
liftOnβ‚‚ πŸ“–CompOp
1 mathmath: liftOnβ‚‚_eq
of πŸ“–CompOp
5 mathmath: liftOnβ‚‚_eq, liftOn_eq, of_eq_of, add_of, of_le_of

Theorems

NameKindAssumesProvesValidatesDepends On
add_le πŸ“–mathematicalβ€”ManyOneDegree
instLE
instAdd
β€”ind_on
disjoin_le
add_of πŸ“–mathematicalβ€”of
Primcodable.sum
Sum.instMonad_mathlib
ManyOneDegree
instAdd
β€”of_eq_of
disjoin_manyOneReducible
ManyOneReducible.trans
manyOneReducible_toNat
OneOneReducible.to_many_one
OneOneReducible.disjoin_left
OneOneReducible.disjoin_right
toNat_manyOneReducible
ind_on πŸ“–β€”of
Primcodable.ofDenumerable
Denumerable.nat
β€”β€”Quotient.inductionOn'
le_add_left πŸ“–mathematicalβ€”ManyOneDegree
instLE
instAdd
β€”add_le
le_add_right πŸ“–mathematicalβ€”ManyOneDegree
instLE
instAdd
β€”add_le
liftOn_eq πŸ“–mathematicalβ€”liftOn
of
Primcodable.ofDenumerable
Denumerable.nat
β€”β€”
liftOnβ‚‚_eq πŸ“–mathematicalβ€”liftOnβ‚‚
of
Primcodable.ofDenumerable
Denumerable.nat
β€”β€”
of_eq_of πŸ“–mathematicalβ€”of
ManyOneEquiv
β€”of.eq_1
Quotient.eq''
of_le_of πŸ“–mathematicalβ€”ManyOneDegree
instLE
of
ManyOneReducible
β€”manyOneReducible_toNat_toNat

ManyOneEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
congr_left πŸ“–β€”ManyOneEquivβ€”β€”le_congr_left
le_congr_right
congr_right πŸ“–β€”ManyOneEquivβ€”β€”le_congr_right
le_congr_left
le_congr_left πŸ“–mathematicalManyOneEquivManyOneReducibleβ€”ManyOneReducible.trans
le_congr_right πŸ“–mathematicalManyOneEquivManyOneReducibleβ€”ManyOneReducible.trans
of_equiv πŸ“–mathematicalEquiv.ComputableManyOneEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”OneOneEquiv.to_many_one
OneOneEquiv.of_equiv
trans πŸ“–β€”ManyOneEquivβ€”β€”ManyOneReducible.trans

ManyOneReducible

Theorems

NameKindAssumesProvesValidatesDepends On
mk πŸ“–mathematicalComputableManyOneReducibleβ€”β€”
trans πŸ“–β€”ManyOneReducibleβ€”β€”Computable.comp

OneOneEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
congr_left πŸ“–β€”OneOneEquivβ€”β€”le_congr_left
le_congr_right
congr_right πŸ“–β€”OneOneEquivβ€”β€”le_congr_right
le_congr_left
le_congr_left πŸ“–mathematicalOneOneEquivOneOneReducibleβ€”OneOneReducible.trans
le_congr_right πŸ“–mathematicalOneOneEquivOneOneReducibleβ€”OneOneReducible.trans
of_equiv πŸ“–mathematicalEquiv.ComputableOneOneEquiv
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
β€”OneOneReducible.of_equiv
OneOneReducible.of_equiv_symm
to_many_one πŸ“–mathematicalOneOneEquivManyOneEquivβ€”OneOneReducible.to_many_one
trans πŸ“–β€”OneOneEquivβ€”β€”OneOneReducible.trans

OneOneReducible

Theorems

NameKindAssumesProvesValidatesDepends On
disjoin_left πŸ“–mathematicalβ€”OneOneReducible
Primcodable.sum
β€”Computable.sumInl
disjoin_right πŸ“–mathematicalβ€”OneOneReducible
Primcodable.sum
β€”Computable.sumInr
mk πŸ“–mathematicalComputableOneOneReducibleβ€”β€”
of_equiv πŸ“–mathematicalComputable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OneOneReducibleβ€”Equiv.injective
of_equiv_symm πŸ“–mathematicalComputable
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
OneOneReducibleβ€”Equiv.apply_symm_apply
of_equiv
to_many_one πŸ“–mathematicalOneOneReducibleManyOneReducibleβ€”β€”
trans πŸ“–β€”OneOneReducibleβ€”β€”Computable.comp

ULower

Theorems

NameKindAssumesProvesValidatesDepends On
down_computable πŸ“–mathematicalβ€”Equiv.Computable
ULower
Primcodable.toEncodable
Primcodable.ulower
equiv
β€”Primrec.to_comp
Primrec.ulower_down
Primrec.ulower_up

(root)

Definitions

NameCategoryTheorems
ManyOneDegree πŸ“–CompOp
5 mathmath: ManyOneDegree.add_le, ManyOneDegree.add_of, ManyOneDegree.le_add_left, ManyOneDegree.of_le_of, ManyOneDegree.le_add_right
ManyOneEquiv πŸ“–MathDef
8 mathmath: equivalence_of_manyOneEquiv, ManyOneEquiv.of_equiv, OneOneEquiv.to_many_one, ManyOneDegree.of_eq_of, manyOneEquiv_refl, manyOneEquiv_toNat, manyOneEquiv_up, toNat_manyOneEquiv
ManyOneReducible πŸ“–MathDef
12 mathmath: disjoin_le, OneOneReducible.to_many_one, transitive_manyOneReducible, ManyOneEquiv.le_congr_right, manyOneReducible_refl, ManyOneEquiv.le_congr_left, manyOneReducible_toNat_toNat, reflexive_manyOneReducible, manyOneReducible_toNat, toNat_manyOneReducible, ManyOneDegree.of_le_of, ManyOneReducible.mk
OneOneEquiv πŸ“–MathDef
3 mathmath: oneOneEquiv_refl, equivalence_of_oneOneEquiv, OneOneEquiv.of_equiv
OneOneReducible πŸ“–MathDef
10 mathmath: OneOneReducible.of_equiv, OneOneEquiv.le_congr_left, OneOneReducible.mk, transitive_oneOneReducible, OneOneReducible.of_equiv_symm, OneOneReducible.disjoin_left, oneOneReducible_refl, reflexive_oneOneReducible, OneOneReducible.disjoin_right, OneOneEquiv.le_congr_right
toNat πŸ“–CompOp
5 mathmath: manyOneReducible_toNat_toNat, manyOneReducible_toNat, manyOneEquiv_toNat, toNat_manyOneReducible, toNat_manyOneEquiv
Β«term_≀₀_Β» πŸ“–CompOpβ€”
Β«term_≀₁_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
disjoin_le πŸ“–mathematicalβ€”ManyOneReducible
Primcodable.sum
β€”ManyOneReducible.trans
OneOneReducible.to_many_one
OneOneReducible.disjoin_left
OneOneReducible.disjoin_right
disjoin_manyOneReducible
disjoin_manyOneReducible πŸ“–mathematicalManyOneReduciblePrimcodable.sumβ€”Computable.sumCasesOn
Computable.id
Computable.toβ‚‚
Computable.comp
Computable.snd
equivalence_of_manyOneEquiv πŸ“–mathematicalβ€”ManyOneEquivβ€”manyOneEquiv_refl
ManyOneEquiv.symm
ManyOneEquiv.trans
equivalence_of_oneOneEquiv πŸ“–mathematicalβ€”OneOneEquivβ€”oneOneEquiv_refl
OneOneEquiv.symm
OneOneEquiv.trans
manyOneEquiv_refl πŸ“–mathematicalβ€”ManyOneEquivβ€”manyOneReducible_refl
manyOneEquiv_toNat πŸ“–mathematicalβ€”ManyOneEquiv
Primcodable.ofDenumerable
Denumerable.nat
toNat
β€”β€”
manyOneEquiv_up πŸ“–mathematicalβ€”ManyOneEquiv
ULower
Primcodable.toEncodable
Primcodable.ulower
ULower.up
β€”ManyOneEquiv.of_equiv
Equiv.Computable.symm
ULower.down_computable
manyOneReducible_refl πŸ“–mathematicalβ€”ManyOneReducibleβ€”Computable.id
manyOneReducible_toNat πŸ“–mathematicalβ€”ManyOneReducible
Primcodable.ofDenumerable
Denumerable.nat
toNat
β€”Computable.encode
Encodable.encodek
manyOneReducible_toNat_toNat πŸ“–mathematicalβ€”ManyOneReducible
Primcodable.ofDenumerable
Denumerable.nat
toNat
β€”ManyOneReducible.trans
manyOneReducible_toNat
toNat_manyOneReducible
oneOneEquiv_refl πŸ“–mathematicalβ€”OneOneEquivβ€”oneOneReducible_refl
oneOneReducible_refl πŸ“–mathematicalβ€”OneOneReducibleβ€”Computable.id
reflexive_manyOneReducible πŸ“–mathematicalβ€”Reflexive
ManyOneReducible
β€”manyOneReducible_refl
reflexive_oneOneReducible πŸ“–mathematicalβ€”Reflexive
OneOneReducible
β€”oneOneReducible_refl
toNat_manyOneEquiv πŸ“–mathematicalβ€”ManyOneEquiv
Primcodable.ofDenumerable
Denumerable.nat
toNat
β€”β€”
toNat_manyOneReducible πŸ“–mathematicalβ€”ManyOneReducible
Primcodable.ofDenumerable
Denumerable.nat
toNat
β€”Computable.option_getD
Computable.decode
Computable.const
transitive_manyOneReducible πŸ“–mathematicalβ€”Transitive
ManyOneReducible
β€”ManyOneReducible.trans
transitive_oneOneReducible πŸ“–mathematicalβ€”Transitive
OneOneReducible
β€”OneOneReducible.trans

---

← Back to Index